Towards Trustworthy Explanation: On Causal Rationalization
- URL: http://arxiv.org/abs/2306.14115v2
- Date: Sat, 9 Sep 2023 03:50:04 GMT
- Title: Towards Trustworthy Explanation: On Causal Rationalization
- Authors: Wenbo Zhang, Tong Wu, Yunlong Wang, Yong Cai, Hengrui Cai
- Abstract summary: We propose a new model of rationalization based on two causal desiderata, non-spuriousness and efficiency.
The superior performance of the proposed causal rationalization is demonstrated on real-world review and medical datasets.
- Score: 9.48539398357156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advances in natural language processing, rationalization becomes
an essential self-explaining diagram to disentangle the black box by selecting
a subset of input texts to account for the major variation in prediction. Yet,
existing association-based approaches on rationalization cannot identify true
rationales when two or more snippets are highly inter-correlated and thus
provide a similar contribution to prediction accuracy, so-called spuriousness.
To address this limitation, we novelly leverage two causal desiderata,
non-spuriousness and efficiency, into rationalization from the causal inference
perspective. We formally define a series of probabilities of causation based on
a newly proposed structural causal model of rationalization, with its
theoretical identification established as the main component of learning
necessary and sufficient rationales. The superior performance of the proposed
causal rationalization is demonstrated on real-world review and medical
datasets with extensive experiments compared to state-of-the-art methods.
Related papers
- Enhancing the Rationale-Input Alignment for Self-explaining
Rationalization [22.74436500022893]
We introduce a novel approach called DAR (textbfDiscriminatively textbfAligned textbfRationalization) to align the selected rationale and the original input.
Experiments on two widely used real-world benchmarks show that the proposed method significantly improves the explanation quality.
arXiv Detail & Related papers (2023-12-07T07:37:15Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
We use a novel semantic approach to achieve decidability.
Specifically, we augment the logic of knowledge S5$_n$ and with an interaction axiom called (knowledge) commutativity.
We prove that our framework admits a finitary non-fixpoint characterization of common knowledge, which is of independent interest.
arXiv Detail & Related papers (2023-07-28T11:26:26Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - SPECTRA: Sparse Structured Text Rationalization [0.0]
We present a unified framework for deterministic extraction of structured explanations via constrained inference on a factor graph.
Our approach greatly eases training and rationale regularization, generally outperforming previous work on plausibility extracted explanations.
arXiv Detail & Related papers (2021-09-09T20:39:56Z) - Measuring Association Between Labels and Free-Text Rationales [60.58672852655487]
In interpretable NLP, we require faithful rationales that reflect the model's decision-making process for an explained instance.
We demonstrate that pipelines, existing models for faithful extractive rationalization on information-extraction style tasks, do not extend as reliably to "reasoning" tasks requiring free-text rationales.
We turn to models that jointly predict and rationalize, a class of widely used high-performance models for free-text rationalization whose faithfulness is not yet established.
arXiv Detail & Related papers (2020-10-24T03:40:56Z) - Invariant Rationalization [84.1861516092232]
A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale.
We introduce a game-theoretic invariant rationalization criterion where the rationales are constrained to enable the same predictor to be optimal across different environments.
We show both theoretically and empirically that the proposed rationales can rule out spurious correlations, generalize better to different test scenarios, and align better with human judgments.
arXiv Detail & Related papers (2020-03-22T00:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.