Advancing Counterfactual Inference through Nonlinear Quantile Regression
- URL: http://arxiv.org/abs/2306.05751v3
- Date: Wed, 28 Feb 2024 04:01:47 GMT
- Title: Advancing Counterfactual Inference through Nonlinear Quantile Regression
- Authors: Shaoan Xie, Biwei Huang, Bin Gu, Tongliang Liu, Kun Zhang
- Abstract summary: We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
- Score: 77.28323341329461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capacity to address counterfactual "what if" inquiries is crucial for
understanding and making use of causal influences. Traditional counterfactual
inference, under Pearls' counterfactual framework, typically depends on having
access to or estimating a structural causal model. Yet, in practice, this
causal model is often unknown and might be challenging to identify. Hence, this
paper aims to perform reliable counterfactual inference based solely on
observational data and the (learned) qualitative causal structure, without
necessitating a predefined causal model or even direct estimations of
conditional distributions. To this end, we establish a novel connection between
counterfactual inference and quantile regression and show that counterfactual
inference can be reframed as an extended quantile regression problem. Building
on this insight, we propose a practical framework for efficient and effective
counterfactual inference implemented with neural networks under a bi-level
optimization scheme. The proposed approach enhances the capacity to generalize
estimated counterfactual outcomes to unseen data, thereby providing an upper
bound on the generalization error. Furthermore, empirical evidence demonstrates
its superior statistical efficiency in comparison to existing methods.
Empirical results conducted on multiple datasets offer compelling support for
our theoretical assertions.
Related papers
- Counterfactual Generative Modeling with Variational Causal Inference [1.9287470458589586]
We present a novel variational Bayesian causal inference framework to handle counterfactual generative modeling tasks.
In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling.
arXiv Detail & Related papers (2024-10-16T16:44:12Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
Tokenization is a critical step in the NLP pipeline.
Despite its recognized importance as a standard representation method in NLP, the theoretical underpinnings of tokenization are not yet fully understood.
The present paper contributes to addressing this theoretical gap by proposing a unified formal framework for representing and analyzing tokenizer models.
arXiv Detail & Related papers (2024-07-16T11:12:28Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
Amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data.
We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples.
We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator.
arXiv Detail & Related papers (2023-05-24T10:18:45Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.