Machine Learning and Consumer Data
- URL: http://arxiv.org/abs/2306.14118v1
- Date: Sun, 25 Jun 2023 03:58:15 GMT
- Title: Machine Learning and Consumer Data
- Authors: Hannah H. Chang, Anirban Mukherjee
- Abstract summary: The digital revolution has led to the digitization of human behavior, creating unprecedented opportunities to understand observable actions on an unmatched scale.
Emerging phenomena such as crowdfunding and crowdsourcing have further illuminated consumer behavior while also introducing new behavioral patterns.
Traditional methods used to analyze consumer data fall short in handling the breadth, precision, and scale of emerging data sources.
- Score: 0.4873362301533825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital revolution has led to the digitization of human behavior,
creating unprecedented opportunities to understand observable actions on an
unmatched scale. Emerging phenomena such as crowdfunding and crowdsourcing have
further illuminated consumer behavior while also introducing new behavioral
patterns. However, the sheer volume and complexity of this data present
significant challenges for marketing researchers and practitioners. Traditional
methods used to analyze consumer data fall short in handling the breadth,
precision, and scale of emerging data sources. To address this, computational
methods have been developed to manage the "big data" associated with consumer
behavior, which typically includes structured data, textual data, audial data,
and visual data. These methods, particularly machine learning, allow for
effective parsing and processing of multi-faceted data. Given these recent
developments, this review article seeks to familiarize researchers and
practitioners with new data sources and analysis techniques for studying
consumer behavior at scale. It serves as an introduction to the application of
computational social science in understanding and leveraging publicly available
consumer data.
Related papers
- DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Multimodal Deep Learning of Word-of-Mouth Text and Demographics to
Predict Customer Rating: Handling Consumer Heterogeneity in Marketing [0.0]
A number of consumers today usually post their evaluation on the specific product on the online platform.
This study constructs a product evaluation model that takes into account consumer heterogeneity by multimodal learning of online product reviews and consumer profile information.
arXiv Detail & Related papers (2024-01-22T12:28:50Z) - A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach.
This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data.
arXiv Detail & Related papers (2023-09-19T14:39:03Z) - Interpretable Machine Learning for Discovery: Statistical Challenges \&
Opportunities [1.2891210250935146]
We discuss and review the field of interpretable machine learning.
We outline the types of discoveries that can be made using Interpretable Machine Learning.
We focus on the grand challenge of how to validate these discoveries in a data-driven manner.
arXiv Detail & Related papers (2023-08-02T23:57:31Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - Insights into Data through Model Behaviour: An Explainability-driven
Strategy for Data Auditing for Responsible Computer Vision Applications [70.92379567261304]
This study explores an explainability-driven strategy to data auditing.
We demonstrate this strategy by auditing two popular medical benchmark datasets.
We discover hidden data quality issues that lead deep learning models to make predictions for the wrong reasons.
arXiv Detail & Related papers (2021-06-16T23:46:39Z) - From Data to Knowledge to Action: A Global Enabler for the 21st Century [26.32590947516587]
A confluence of advances in the computer and mathematical sciences has unleashed unprecedented capabilities for enabling true evidence-based decision making.
These capabilities are making possible the large-scale capture of data and the transformation of that data into insights and recommendations.
The shift of commerce, science, education, art, and entertainment to the web makes available unprecedented quantities of structured and unstructured databases about human activities.
arXiv Detail & Related papers (2020-07-31T19:19:42Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.