A spectrum of physics-informed Gaussian processes for regression in
engineering
- URL: http://arxiv.org/abs/2309.10656v1
- Date: Tue, 19 Sep 2023 14:39:03 GMT
- Title: A spectrum of physics-informed Gaussian processes for regression in
engineering
- Authors: Elizabeth J Cross, Timothy J Rogers, Daniel J Pitchforth, Samuel J
Gibson and Matthew R Jones
- Abstract summary: Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach.
This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the growing availability of sensing and data in general, we remain
unable to fully characterise many in-service engineering systems and structures
from a purely data-driven approach. The vast data and resources available to
capture human activity are unmatched in our engineered world, and, even in
cases where data could be referred to as ``big,'' they will rarely hold
information across operational windows or life spans. This paper pursues the
combination of machine learning technology and physics-based reasoning to
enhance our ability to make predictive models with limited data. By explicitly
linking the physics-based view of stochastic processes with a data-based
regression approach, a spectrum of possible Gaussian process models are
introduced that enable the incorporation of different levels of expert
knowledge of a system. Examples illustrate how these approaches can
significantly reduce reliance on data collection whilst also increasing the
interpretability of the model, another important consideration in this context.
Related papers
- Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Explainable Artificial Intelligence for Improved Modeling of Processes [6.29494485203591]
We evaluate the capability of modern Transformer architectures and more classical Machine Learning technologies of modeling process regularities.
We show that the ML models are capable of predicting critical outcomes and that the attention mechanisms or XAI components offer new insights into the underlying processes.
arXiv Detail & Related papers (2022-12-01T17:56:24Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
We show how flexible non-linear solutions will not always improve upon manually adding transforms and interactions between variables to linear regression models.
We discuss how to recognize this before constructing a data-driven model and how such analysis can help us move to intrinsically interpretable regression models.
arXiv Detail & Related papers (2022-11-21T17:48:44Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - You Only Compress Once: Optimal Data Compression for Estimating Linear
Models [1.2845031126178592]
Many engineering systems that use linear models achieve computational efficiency through distributed systems and expert configuration.
Conditionally sufficient statistics is a unified data compression and estimation strategy.
arXiv Detail & Related papers (2021-02-22T19:00:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - A probabilistic generative model for semi-supervised training of
coarse-grained surrogates and enforcing physical constraints through virtual
observables [3.8073142980733]
This paper provides a flexible, probabilistic framework that accounts for physical structure and information both in the training objectives and in the surrogate model itself.
We advocate a probabilistic model in which equalities that are available from the physics can be introduced as virtual observables and can provide additional information through the likelihood.
arXiv Detail & Related papers (2020-06-02T17:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.