論文の概要: On Evaluating the Adversarial Robustness of Semantic Segmentation Models
- arxiv url: http://arxiv.org/abs/2306.14217v1
- Date: Sun, 25 Jun 2023 11:45:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 16:13:27.186475
- Title: On Evaluating the Adversarial Robustness of Semantic Segmentation Models
- Title(参考訳): 意味セグメンテーションモデルの逆ロバスト性評価について
- Authors: Levente Halmosi and Mark Jelasity
- Abstract要約: 敵の摂動に対する防御手段として、多くの敵の訓練アプローチが提案されている。
私たちは、前回の作業で堅牢であると主張するモデルが、実際にはまったく堅牢ではないことを初めて示しています。
次に, 強攻撃群においても, 合理的に堅牢なモデルを生成する, 単純な対向訓練アルゴリズムを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving robustness against adversarial input perturbation is an important
and intriguing problem in machine learning. In the area of semantic image
segmentation, a number of adversarial training approaches have been proposed as
a defense against adversarial perturbation, but the methodology of evaluating
the robustness of the models is still lacking, compared to image
classification. Here, we demonstrate that, just like in image classification,
it is important to evaluate the models over several different and hard attacks.
We propose a set of gradient based iterative attacks and show that it is
essential to perform a large number of iterations. We include attacks against
the internal representations of the models as well. We apply two types of
attacks: maximizing the error with a bounded perturbation, and minimizing the
perturbation for a given level of error. Using this set of attacks, we show for
the first time that a number of models in previous work that are claimed to be
robust are in fact not robust at all. We then evaluate simple adversarial
training algorithms that produce reasonably robust models even under our set of
strong attacks. Our results indicate that a key design decision to achieve any
robustness is to use only adversarial examples during training. However, this
introduces a trade-off between robustness and accuracy.
- Abstract(参考訳): 逆入力摂動に対する堅牢性を達成することは、機械学習において重要かつ興味深い問題である。
セマンティックイメージセグメンテーションの分野では, 対角的摂動に対する防御手段として, 多くの対角的トレーニング手法が提案されているが, モデルのロバスト性を評価する方法論は, 画像分類と比較してまだ不足している。
ここでは,画像分類と同様に,複数の異なるハードアタックに対してモデルを評価することが重要であることを示す。
グラデーションに基づく反復攻撃のセットを提案し,多数の反復を実行することが不可欠であることを示す。
モデルの内部表現に対する攻撃も含んでいます。
本研究では,有界摂動による誤差の最大化と,所定のレベルの誤差に対する摂動の最小化という2種類の攻撃を適用した。
この一連の攻撃を用いることで、ロバストであると主張する以前の作業における多くのモデルが、実際にはまったくロバストではないことを初めて示す。
次に, 強攻撃群においても, 合理的に堅牢なモデルを生成する, 単純な対向訓練アルゴリズムを評価する。
以上の結果から,ロバスト性を実現するための重要な設計判断は,トレーニング中に相手の例のみを使用することであることが示唆された。
しかし、これは堅牢性と正確性の間のトレードオフをもたらす。
関連論文リスト
- Evaluating the Adversarial Robustness of Semantic Segmentation: Trying Harder Pays Off [0.6554326244334868]
対人摂動に対する感度の良好な近似は、現在満足していると見なされているものよりもはるかに多くの労力を要すると我々は主張する。
我々は新たな攻撃を提案し、文学で利用可能な最強の攻撃と組み合わせる。
我々の結果は、異なるモデルが異なる攻撃に対して脆弱であることが多いため、多様な強力な攻撃が必要であることも示している。
論文 参考訳(メタデータ) (2024-07-12T10:32:53Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
本稿では,GAN(Generative Adrial Networks)を基盤として,画像から画像への変換を利用した統合フレームワークを提案する。
これは、分類器と識別器を1つのモデルに組み合わせて、実際の画像をそれぞれのクラスに属性付け、生成されたイメージを「フェイク」として生成することで達成される。
モデルが敵攻撃に対するロバスト性の向上を示すことを示すとともに,判別器の「フェイクネス」値が予測の不確かさの指標となることを示す。
論文 参考訳(メタデータ) (2023-10-01T18:50:29Z) - Towards Reliable Evaluation and Fast Training of Robust Semantic Segmentation Models [47.03411822627386]
我々は,mIoUとmIoUの精度の異なる指標を最小化する,いくつかの問題固有の新規攻撃を提案する。
驚くべきことに、セマンティックセグメンテーションモデルに対する既存の敵の訓練の試みは、弱かったり、全く損なわれなかったりする。
最近提案された堅牢なImageNetバックボーンを用いて,PASCAL-VOCとADE20kの最大6倍のトレーニング時間を持つ,対向的に堅牢なセマンティックセマンティックセマンティクスモデルを得ることができることを示す。
論文 参考訳(メタデータ) (2023-06-22T14:56:06Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
実際には、特定の列車およびテストデータセットに関する計量分析は、信頼性や公正なMLモデルを保証しない。
本稿では,セマンティック・イメージ・アタック(SIA)を提案する。
論文 参考訳(メタデータ) (2023-03-23T03:13:04Z) - SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
Boosting Segmentation Robustness [63.726895965125145]
ディープニューラルネットワークに基づく画像分類は、敵の摂動に弱い。
本研究では,SegPGDと呼ばれる効果的かつ効率的なセグメンテーション攻撃手法を提案する。
SegPGDはより効果的な敵の例を生成することができるため、SegPGDを用いた敵の訓練はセグメントモデルの堅牢性を高めることができる。
論文 参考訳(メタデータ) (2022-07-25T17:56:54Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
本稿では, 敵の強靭性に対する新たな理解を提案し, ドメイン適応や頑健性向上といったタスクに適用する。
提案したクラスタリング戦略の合理性と優越性を実験的に評価した。
論文 参考訳(メタデータ) (2021-11-25T05:51:03Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - A Differentiable Language Model Adversarial Attack on Text Classifiers [10.658675415759697]
自然言語処理のための新しいブラックボックス文レベルアタックを提案する。
本手法は,事前学習した言語モデルを微調整して,逆例を生成する。
提案手法は, 計算量と人的評価の両方において, 多様なNLP問題において, 競合相手よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-23T14:43:13Z) - Differentiable Language Model Adversarial Attacks on Categorical
Sequence Classifiers [0.0]
敵対的攻撃パラダイムは、ディープラーニングモデルの脆弱性の様々なシナリオを探索する。
本研究では,言語モデルの微調整を,敵対的攻撃のジェネレータとして利用する。
我々のモデルは、銀行取引、電子健康記録、NLPデータセットに関する多様なデータセットに対して機能する。
論文 参考訳(メタデータ) (2020-06-19T11:25:36Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。