論文の概要: A ground-based dataset and a diffusion model for on-orbit low-light image enhancement
- arxiv url: http://arxiv.org/abs/2306.14227v2
- Date: Mon, 8 Apr 2024 12:50:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 05:07:30.557812
- Title: A ground-based dataset and a diffusion model for on-orbit low-light image enhancement
- Title(参考訳): 軌道上低光画像強調のための地上データセットと拡散モデル
- Authors: Yiman Zhu, Lu Wang, Jingyi Yuan, Yu Guo,
- Abstract要約: 軌道上低光画像強調(LLIE)のためのバイドゥナビゲーション衛星のデータセットを提案する。
衝突することなく異なる方向と距離のポーズを均一にサンプリングするために、衝突のない作業空間と階層化サンプリングのポーズを提案する。
余剰露光や細部をぼかすことなく画像のコントラストを高めるために,構造と暗黒領域を強調するために,融合した注意を設計する。
- 参考スコア(独自算出の注目度): 7.815138548685792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On-orbit service is important for maintaining the sustainability of space environment. Space-based visible camera is an economical and lightweight sensor for situation awareness during on-orbit service. However, it can be easily affected by the low illumination environment. Recently, deep learning has achieved remarkable success in image enhancement of natural images, but seldom applied in space due to the data bottleneck. In this article, we first propose a dataset of the Beidou Navigation Satellite for on-orbit low-light image enhancement (LLIE). In the automatic data collection scheme, we focus on reducing domain gap and improving the diversity of the dataset. we collect hardware in-the-loop images based on a robotic simulation testbed imitating space lighting conditions. To evenly sample poses of different orientation and distance without collision, a collision-free working space and pose stratified sampling is proposed. Afterwards, a novel diffusion model is proposed. To enhance the image contrast without over-exposure and blurring details, we design a fused attention to highlight the structure and dark region. Finally, we compare our method with previous methods using our dataset, which indicates that our method has a better capacity in on-orbit LLIE.
- Abstract(参考訳): 軌道上のサービスは、宇宙環境の持続可能性を維持するために重要である。
スペースベースの可視カメラは、軌道上での状況認識のための経済的かつ軽量なセンサーである。
しかし、低照度環境の影響を受けやすい。
近年、深層学習は自然画像の画質向上に顕著な成功を収めているが、データボトルネックのため、宇宙ではほとんど適用されない。
本稿では,まず,軌道上低照度画像強調(LLIE)のためのBeidou Navigation Satelliteのデータセットを提案する。
自動データ収集方式では、ドメインギャップの低減とデータセットの多様性の向上に重点を置いている。
我々は,空間照明条件を模倣したロボットシミュレーションにより,ループ内のハードウェア画像を収集した。
衝突することなく異なる方向と距離のポーズを均一にサンプリングするために、衝突のない作業空間と階層化サンプリングのポーズを提案する。
その後,新しい拡散モデルが提案される。
余剰露光や細部をぼかすことなく画像のコントラストを高めるために,構造と暗黒領域を強調するために,融合した注意を設計する。
最後に,本手法と従来手法との比較を行い,本手法が軌道上LLIEにおいてより優れたキャパシティを有することを示す。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach [7.974102031202597]
そこで本研究では,低照度および常照度条件下での30万組以上の画像とイベントからなる実世界(屋内および屋外)データセットを提案する。
このデータセットに基づいて、実世界の低照度シーンにおけるロバストなパフォーマンスを実現するために、EvLightと呼ばれるイベント誘導型LIEアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-01T00:18:17Z) - Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation [33.142262765252795]
精巧なデータで訓練された検出器は、可視性が低いため、低照度データに対して顕著な性能低下を示す。
我々は、ゼロショット昼夜領域適応による低照度物体検出の高速化を提案する。
本手法は,低照度データを必要とすることなく,高照度シナリオから低照度シナリオへの検出器の一般化を行う。
論文 参考訳(メタデータ) (2023-12-02T20:11:48Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Space Debris: Are Deep Learning-based Image Enhancements part of the
Solution? [9.117415383776695]
現在地球を周回している宇宙ゴミの量は、加速ペースで持続不可能なレベルに達している。
軌道定義された、登録された宇宙船と、ローグ/非活動的な宇宙物体の検知、追跡、識別、識別は、資産保護に不可欠である。
本研究の主な目的は、可視光スペクトルの単眼カメラで捉えた際の限界や画像アーチファクトを克服するために、ディープニューラルネットワーク(DNN)ソリューションの有効性を検討することである。
論文 参考訳(メタデータ) (2023-08-01T09:38:41Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
本研究では,深海や地球外地形などの極端な環境下で得られた画像の列から,カメラのポーズを確実に推定する手法を提案する。
本手法は,室内ベンチマーク (7-Scenes データセット) における最先端手法と同等の性能を20%のトレーニングデータで達成する。
論文 参考訳(メタデータ) (2022-07-13T16:40:02Z) - Spatially-Varying Outdoor Lighting Estimation from Intrinsics [66.04683041837784]
本稿では,空間変動型屋外照明推定のためのニューラルネットワークSOLID-Netを提案する。
グローバルスカイ環境マップとワープ画像情報を組み合わせて,空間変動する局所照明環境マップを生成する。
合成データセットと実データセットの両方の実験は、SOLID-Netが以前の方法を大幅に上回っていることを示しています。
論文 参考訳(メタデータ) (2021-04-09T02:28:54Z) - Low Light Image Enhancement via Global and Local Context Modeling [164.85287246243956]
低照度画像強調のためのコンテキスト認識ディープネットワークを導入。
まず、全空間領域上の補完的な手がかりを見つけるために空間相関をモデル化するグローバルコンテキストモジュールを特徴とする。
第二に、比較的大きな受容フィールドで局所的なコンテキストをキャプチャする密な残留ブロックを導入する。
論文 参考訳(メタデータ) (2021-01-04T09:40:54Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。