論文の概要: Faster Segment Anything: Towards Lightweight SAM for Mobile Applications
- arxiv url: http://arxiv.org/abs/2306.14289v2
- Date: Sat, 1 Jul 2023 07:26:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 12:15:26.862363
- Title: Faster Segment Anything: Towards Lightweight SAM for Mobile Applications
- Title(参考訳): より高速なセグメンテーション:モバイルアプリケーションのための軽量SAMを目指して
- Authors: Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae,
Seungkyu Lee, Choong Seon Hong
- Abstract要約: この作業は、重い画像エンコーダを軽量なものに置き換えることで、Segment Anything Model(SAM)をモバイルフレンドリーにすることを目的としている。
我々は、重画像エンコーダから軽量画像エンコーダに知識を蒸留し、元のSAMのマスクデコーダと自動的に互換性を持たせる。
結果として生じる軽量SAMはMobileSAMと呼ばれ、これは60倍以上小さいが、オリジナルのSAMと同等に動作する。
- 参考スコア(独自算出の注目度): 47.177751899636164
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Segment Anything Model (SAM) has attracted significant attention due to its
impressive zero-shot transfer performance and high versatility for numerous
vision applications (like image editing with fine-grained control). Many of
such applications need to be run on resource-constraint edge devices, like
mobile phones. In this work, we aim to make SAM mobile-friendly by replacing
the heavyweight image encoder with a lightweight one. A naive way to train such
a new SAM as in the original SAM paper leads to unsatisfactory performance,
especially when limited training sources are available. We find that this is
mainly caused by the coupled optimization of the image encoder and mask
decoder, motivated by which we propose decoupled distillation. Concretely, we
distill the knowledge from the heavy image encoder (ViT-H in the original SAM)
to a lightweight image encoder, which can be automatically compatible with the
mask decoder in the original SAM. The training can be completed on a single GPU
within less than one day, and the resulting lightweight SAM is termed MobileSAM
which is more than 60 times smaller yet performs on par with the original SAM.
For inference speed, With a single GPU, MobileSAM runs around 10ms per image:
8ms on the image encoder and 4ms on the mask decoder. With superior
performance, our MobileSAM is around 5 times faster than the concurrent FastSAM
and 7 times smaller, making it more suitable for mobile applications. Moreover,
we show that MobileSAM can run relatively smoothly on CPU. The code for our
project is provided at
\href{https://github.com/ChaoningZhang/MobileSAM}{\textcolor{red}{MobileSAM}}),
with a demo showing that MobileSAM can run relatively smoothly on CPU.
- Abstract(参考訳): Segment Anything Model (SAM) は印象的なゼロショット転送性能と多数の視覚アプリケーション(きめ細かい制御による画像編集など)の多用途性のために注目されている。
このようなアプリケーションの多くは、携帯電話のようなリソース制約のあるエッジデバイス上で実行する必要がある。
本研究では,重厚画像エンコーダを軽量画像エンコーダに置き換えることで,SAMをモバイルフレンドリーにすることを目的とする。
オリジナルのSAM論文のように、このような新しいSAMをトレーニングする簡単な方法は、特に限られたトレーニングソースが利用できる場合、不満足なパフォーマンスをもたらす。
画像エンコーダとマスクデコーダの結合最適化が主な原因で,脱カップリング蒸留法を提案する。
具体的には、重画像エンコーダ(元のSAMではViT-H)から軽量画像エンコーダに知識を蒸留し、元のSAMではマスクデコーダと自動的に互換性を持つ。
トレーニングは1日以内で1つのGPU上で完了することができ、その結果得られる軽量SAMはMobileSAMと呼ばれる。
推論速度では、単一のGPUで、MobileSAMは画像当たり約10msで、画像エンコーダでは8ms、マスクデコーダでは4msで動作する。
優れたパフォーマンスで、MobileSAMは同時実行のFastSAMの約5倍高速で、7倍小さく、モバイルアプリケーションに向いています。
さらに,MobileSAMはCPU上で比較的スムーズに動作可能であることを示す。
プロジェクトのコードは \href{https://github.com/ChaoningZhang/MobileSAM}{\textcolor{red}{MobileSAM}} で提供されている。
関連論文リスト
- MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - SAM-Lightening: A Lightweight Segment Anything Model with Dilated Flash Attention to Achieve 30 times Acceleration [6.515075311704396]
Segment Anything Model (SAM)は、ゼロショットの一般化能力のためにセグメンテーションタスクに大きな注目を集めている。
我々はSAMの亜種であるSAM-Lighteningを紹介し、Dilated Flash Attentionと呼ばれる再設計されたアテンション機構を特徴としている。
COCOとLVISの実験により、SAM-Lighteningは実行時の効率とセグメンテーション精度の両方において最先端の手法よりも大幅に優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-03-14T09:07:34Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
本研究は,まず,軽量学生モデルを蒸留するためのハードプロンプトサンプリングとハードマスク重み付け戦略を用いた,フルステージの知識蒸留法を提案する。
また、学習後の量子化を高速化可能なセグメンテーションタスクに適用し、計算コストをさらに削減する。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - EdgeSAM: Prompt-In-the-Loop Distillation for On-Device Deployment of SAM [71.868623296582]
EdgeSAMはSegment Anything Model (SAM)の高速化版である。
我々のアプローチは、VTベースのSAMイメージエンコーダを純粋にCNNベースのアーキテクチャに蒸留することである。
これは、iPhone 14で30FPS以上で動作可能なSAMの最初の派生機種である。
論文 参考訳(メタデータ) (2023-12-11T18:59:52Z) - RepViT-SAM: Towards Real-Time Segmenting Anything [71.94042743317937]
Segment Anything Model (SAM) は、様々なコンピュータビジョンタスクに対して印象的なゼロショット転送性能を示した。
MobileSAMは蒸留を用いてSAMの重い画像エンコーダをTinyViTに置き換えることを提案する。
RepViT-SAMはMobileSAMよりもはるかに優れたゼロショット転送機能を持ち、推論速度は10倍近い。
論文 参考訳(メタデータ) (2023-12-10T04:42:56Z) - EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment
Anything [36.553867358541154]
Segment Anything Model (SAM)は多くの視覚アプリケーションのための強力なツールとして登場した。
本稿では,軽量なSAMモデルであるEfficientSAMを提案する。
我々のアイデアは、SAM画像エンコーダから特徴を再構築し、効果的な視覚的表現学習を実現するためのマスク付き画像事前学習(SAMI)を活用することに基づいている。
論文 参考訳(メタデータ) (2023-12-01T18:31:00Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。