Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification
- URL: http://arxiv.org/abs/2306.14430v1
- Date: Mon, 26 Jun 2023 05:58:17 GMT
- Title: Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification
- Authors: AS Desai and Navaneeth N and S Adhikari and S Chakraborty
- Abstract summary: Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing significance of digital twin technology across engineering and
industrial domains, such as aerospace, infrastructure, and automotive, is
undeniable. However, the lack of detailed application-specific information
poses challenges to its seamless implementation in practical systems.
Data-driven models play a crucial role in digital twins, enabling real-time
updates and predictions by leveraging data and computational models.
Nonetheless, the fidelity of available data and the scarcity of accurate sensor
data often hinder the efficient learning of surrogate models, which serve as
the connection between physical systems and digital twin models. To address
this challenge, we propose a novel framework that begins by developing a robust
multi-fidelity surrogate model, subsequently applied for tracking digital twin
systems. Our framework integrates polynomial correlated function expansion
(PCFE) with the Gaussian process (GP) to create an effective surrogate model
called H-PCFE. Going a step further, we introduce deep-HPCFE, a cascading
arrangement of models with different fidelities, utilizing nonlinear
auto-regression schemes. These auto-regressive schemes effectively address the
issue of erroneous predictions from low-fidelity models by incorporating
space-dependent cross-correlations among the models. To validate the efficacy
of the multi-fidelity framework, we first assess its performance in uncertainty
quantification using benchmark numerical examples. Subsequently, we demonstrate
its applicability in the context of digital twin systems.
Related papers
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Probabilistic machine learning based predictive and interpretable
digital twin for dynamical systems [0.0]
Two approaches for updating the digital twin are proposed.
In both cases, the resulting expressions of updated digital twins are identical.
The proposed approaches provide an exact and explainable description of the perturbations in digital twin models.
arXiv Detail & Related papers (2022-12-19T04:25:59Z) - Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning [0.0]
A digital twin is a surrogate model that has the main feature to mirror the original process behavior.
This paper introduces a new framework for creating efficient digital twin models of fluid flows.
We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model.
arXiv Detail & Related papers (2022-06-17T09:45:04Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Machine learning based digital twin for dynamical systems with multiple
time-scales [0.0]
Digital twin technology has a huge potential for widespread applications in different industrial sectors such as infrastructure, aerospace, and automotive.
Here we focus on a digital twin framework for linear single-degree-of-freedom structural dynamic systems evolving in two different operational time scales.
arXiv Detail & Related papers (2020-05-12T15:33:25Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
Digital twin technology has significant promise, relevance and potential of widespread applicability.
Digital twins are expected to exploit data and computational methods.
We have explored the possibility of using surrogate models within the digital twin technology.
arXiv Detail & Related papers (2020-01-25T10:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.