論文の概要: Distributive Pre-Training of Generative Modeling Using Matrix-Product
States
- arxiv url: http://arxiv.org/abs/2306.14787v1
- Date: Mon, 26 Jun 2023 15:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 12:57:42.335469
- Title: Distributive Pre-Training of Generative Modeling Using Matrix-Product
States
- Title(参考訳): 行列生成状態を用いた生成モデルの分散事前学習
- Authors: Sheng-Hsuan Lin, Olivier Kuijpers, Sebastian Peterhansl, and Frank
Pollmann
- Abstract要約: 本稿では,基本的なテンソルネットワーク操作,例えば和と圧縮を利用した代替的なトレーニング手法を検討する。
トレーニングアルゴリズムは、製品状態表現におけるすべてのトレーニングデータから構築された重ね合わせ状態を圧縮する。
MNISTデータセット上でアルゴリズムをベンチマークし、新しい画像と分類タスクを生成するための妥当な結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor networks have recently found applications in machine learning for both
supervised learning and unsupervised learning. The most common approaches for
training these models are gradient descent methods. In this work, we consider
an alternative training scheme utilizing basic tensor network operations, e.g.,
summation and compression. The training algorithm is based on compressing the
superposition state constructed from all the training data in product state
representation. The algorithm could be parallelized easily and only iterates
through the dataset once. Hence, it serves as a pre-training algorithm. We
benchmark the algorithm on the MNIST dataset and show reasonable results for
generating new images and classification tasks. Furthermore, we provide an
interpretation of the algorithm as a compressed quantum kernel density
estimation for the probability amplitude of input data.
- Abstract(参考訳): テンソルネットワークは、教師なし学習と教師なし学習の両方に機械学習の応用を見出した。
これらのモデルを訓練する最も一般的なアプローチは勾配降下法である。
本研究では,基本的なテンソルネットワーク操作,例えば和と圧縮を利用した代替トレーニング手法を検討する。
トレーニングアルゴリズムは、製品状態表現におけるすべてのトレーニングデータから構築された重ね合わせ状態を圧縮する。
アルゴリズムは簡単に並列化でき、データセットを一度だけ反復できる。
したがって、事前学習アルゴリズムとして機能する。
MNISTデータセット上でアルゴリズムをベンチマークし、新しい画像と分類タスクを生成するための妥当な結果を示す。
さらに,このアルゴリズムを,入力データの確率振幅に対する圧縮量子カーネル密度推定として解釈する。
関連論文リスト
- Discrete Neural Algorithmic Reasoning [18.497863598167257]
本稿では,有限状態の組合せとして,ニューラル推論器に実行軌跡の維持を強制することを提案する。
アルゴリズムの状態遷移の監督で訓練されたモデルでは、元のアルゴリズムと完全に整合することができる。
論文 参考訳(メタデータ) (2024-02-18T16:03:04Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Automated Sizing and Training of Efficient Deep Autoencoders using
Second Order Algorithms [0.46040036610482665]
一般化線形分類器の多段階学習法を提案する。
検証エラーは不要な入力のプルーニングによって最小化される。
所望の出力は、Ho-Kashyapルールに似た方法で改善される。
論文 参考訳(メタデータ) (2023-08-11T16:48:31Z) - FastHebb: Scaling Hebbian Training of Deep Neural Networks to ImageNet
Level [7.410940271545853]
我々は、Hebbian学習のための効率的でスケーラブルなソリューションであるFastHebbを紹介する。
FastHebbはトレーニングのスピードで、これまでのソリューションを最大50倍のパフォーマンスで上回っている。
私たちは初めて、HebbianアルゴリズムをImageNetスケールに持ち込むことができます。
論文 参考訳(メタデータ) (2022-07-07T09:04:55Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
遅延変数を用いた圧縮による非パラメトリック学習(NPC-LV)を提案する。
NPC-LVは、ラベルなしデータが多いがラベル付きデータはほとんどないデータセットの学習フレームワークである。
我々は,NPC-LVが低データ構造における画像分類における3つのデータセットの教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-23T09:35:03Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Learning with Subset Stacking [0.40964539027092906]
入力-出力ペアの集合から学習する新しい回帰アルゴリズムを提案する。
我々はこのアルゴリズムを「サブセット・スタックング」あるいは「LESS」と呼ぶが、これは回帰器を積み重ねる手法に似ているためである。
論文 参考訳(メタデータ) (2021-12-12T14:33:49Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z) - On Coresets for Support Vector Machines [61.928187390362176]
coresetは、元のデータポイントの小さな、代表的なサブセットである。
我々は,本アルゴリズムを用いて,既製のSVMソルバをストリーミング,分散,動的データ設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-02-15T23:25:12Z) - A Multi-Scale Tensor Network Architecture for Classification and
Regression [0.0]
テンソルネットワークを用いた教師あり学習のためのアルゴリズムを提案する。
我々はウェーブレット変換の連続を通して粗粒化によってデータを前処理するステップを採用する。
ネットワークを通しての細粒化がモデルの初期化にどのように利用されるかを示す。
論文 参考訳(メタデータ) (2020-01-22T21:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。