論文の概要: Scalable Neural Contextual Bandit for Recommender Systems
- arxiv url: http://arxiv.org/abs/2306.14834v3
- Date: Sat, 19 Aug 2023 03:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 23:28:16.844561
- Title: Scalable Neural Contextual Bandit for Recommender Systems
- Title(参考訳): リコメンダシステムのためのスケーラブルなニューラルコンテキスト帯域
- Authors: Zheqing Zhu, Benjamin Van Roy
- Abstract要約: エピステマティック・ニューラルレコメンデーション(英: Epistemic Neural Recommendation)は、リコメンダシステムのためのスケーラブルなサンプル効率なニューラルコンテクチュアル・バンディットアルゴリズムである。
ENRはクリックスルー率とユーザレーティングをそれぞれ少なくとも9%と6%向上させる。
最良性能のベースラインアルゴリズムと比較して、少なくとも29%のユーザインタラクションで同等のパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 20.54959238452023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality recommender systems ought to deliver both innovative and
relevant content through effective and exploratory interactions with users.
Yet, supervised learning-based neural networks, which form the backbone of many
existing recommender systems, only leverage recognized user interests, falling
short when it comes to efficiently uncovering unknown user preferences. While
there has been some progress with neural contextual bandit algorithms towards
enabling online exploration through neural networks, their onerous
computational demands hinder widespread adoption in real-world recommender
systems. In this work, we propose a scalable sample-efficient neural contextual
bandit algorithm for recommender systems. To do this, we design an epistemic
neural network architecture, Epistemic Neural Recommendation (ENR), that
enables Thompson sampling at a large scale. In two distinct large-scale
experiments with real-world tasks, ENR significantly boosts click-through rates
and user ratings by at least 9% and 6% respectively compared to
state-of-the-art neural contextual bandit algorithms. Furthermore, it achieves
equivalent performance with at least 29% fewer user interactions compared to
the best-performing baseline algorithm. Remarkably, while accomplishing these
improvements, ENR demands orders of magnitude fewer computational resources
than neural contextual bandit baseline algorithms.
- Abstract(参考訳): 高品質なレコメンダシステムは、ユーザと効果的かつ探索的なインタラクションを通じて、革新的かつ関連性の高いコンテンツを提供するべきである。
しかし、既存のレコメンデーションシステムのバックボーンを形成する教師付き学習ベースのニューラルネットワークは、認識されたユーザの関心を生かし、未知のユーザの選好を効率的に見つけ出すには不十分である。
ニューラルネットワークによるオンライン探索を可能にするために、ニューラルネットワークのコンテキストバンディットアルゴリズムでは、いくつかの進歩があったが、その厄介な計算要求は、現実世界のレコメンデーションシステムで広く採用されることを妨げる。
本研究では,リコメンデータシステムのためのスケーラブルなサンプル効率ニューラルコンテキスト帯域幅アルゴリズムを提案する。
そこで我々は,トンプソンの大規模サンプリングを可能にするてんかん性ニューラルネットワークアーキテクチャENR( Epistemic Neural Recommendation)を設計した。
実世界のタスクを用いた2つの異なる大規模な実験において、ENRは、最先端のニューラルネットワークの帯域幅アルゴリズムと比較して、クリックスルー率とユーザレーティングを少なくとも9%と6%向上させる。
さらに、最高の性能のベースラインアルゴリズムと比較して、少なくとも29%のユーザインタラクションで同等のパフォーマンスを実現する。
注目すべきは、これらの改善を達成している間に、ENRはニューラルネットワークのコンテキスト帯域ベースラインアルゴリズムよりも、桁違いに少ない計算リソースを要求することである。
関連論文リスト
- Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
ユーザペアリング問題を効率的に解くために,教師なしグラフニューラルネットワーク(GNN)アプローチを提案する。
提案手法は20dBのSNRにおいて,k平均よりも49%,SUSより95%高い総和率を達成する。
論文 参考訳(メタデータ) (2023-05-14T11:57:42Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
標準正規性条件下では、$tildeO(tildedsqrtT)$ regret上界が達成可能であることを示す。
明示的な探索の必要性を排除するために、ニューラルネットワークを更新する際の報酬を混乱させます。
論文 参考訳(メタデータ) (2022-01-24T19:10:22Z) - End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian
Optimization [39.56814839510978]
ニューラルネットワークに基づくカーネルを用いたベイズ最適化のためのメタラーニング手法を提案する。
我々のモデルは、複数のタスクから強化学習フレームワークによって訓練されている。
3つのテキスト文書データセットを用いた実験において,提案手法が既存の手法よりも優れたBO性能を実現することを示す。
論文 参考訳(メタデータ) (2021-11-01T00:42:31Z) - Initialization Matters: Regularizing Manifold-informed Initialization
for Neural Recommendation Systems [47.49065927541129]
我々は、Laplacian Eigenmapsと呼ばれる、分離データ(LEPORID)に対する人気に基づく正規化を用いた新しいユーザ埋め込み方式を提案する。
LEPORIDは、データ多様体上のマルチスケール近傍構造に関する情報を埋め込みに付与し、データ分布の尾に高い埋め込み分散を補う適応正規化を行う。
我々は、LEPORIDを持つ既存のニューラルネットワークが、KNNと同等かそれ以上に動作することを示す。
論文 参考訳(メタデータ) (2021-06-09T11:26:18Z) - An SMT-Based Approach for Verifying Binarized Neural Networks [1.4394939014120451]
本稿では,SMTを用いた二元化ニューラルネットワークの検証手法を提案する。
我々の手法の1つの新しい点は、二項化コンポーネントと非二項化コンポーネントの両方を含むニューラルネットワークの検証を可能にすることである。
我々は、この手法をマラブーフレームワークの拡張として実装し、一般的な二項化ニューラルネットワークアーキテクチャのアプローチを評価する。
論文 参考訳(メタデータ) (2020-11-05T16:21:26Z) - Neural Thompson Sampling [94.82847209157494]
本稿では,ニューラルトンプソンサンプリング(Neural Thompson Smpling)と呼ばれる新しいアルゴリズムを提案する。
我々のアルゴリズムの中核は報酬の新たな後部分布であり、その平均はニューラルネットワーク近似器であり、その分散は対応するニューラルネットワークのニューラル・タンジェントな特徴に基づいて構築されている。
論文 参考訳(メタデータ) (2020-10-02T07:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。