Scalable Neural Contextual Bandit for Recommender Systems
- URL: http://arxiv.org/abs/2306.14834v3
- Date: Sat, 19 Aug 2023 03:32:53 GMT
- Title: Scalable Neural Contextual Bandit for Recommender Systems
- Authors: Zheqing Zhu, Benjamin Van Roy
- Abstract summary: Epistemic Neural Recommendation is a scalable sample-efficient neural contextual bandit algorithm for recommender systems.
ENR significantly boosts click-through rates and user ratings by at least 9% and 6% respectively.
It achieves equivalent performance with at least 29% fewer user interactions compared to the best-performing baseline algorithm.
- Score: 20.54959238452023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality recommender systems ought to deliver both innovative and
relevant content through effective and exploratory interactions with users.
Yet, supervised learning-based neural networks, which form the backbone of many
existing recommender systems, only leverage recognized user interests, falling
short when it comes to efficiently uncovering unknown user preferences. While
there has been some progress with neural contextual bandit algorithms towards
enabling online exploration through neural networks, their onerous
computational demands hinder widespread adoption in real-world recommender
systems. In this work, we propose a scalable sample-efficient neural contextual
bandit algorithm for recommender systems. To do this, we design an epistemic
neural network architecture, Epistemic Neural Recommendation (ENR), that
enables Thompson sampling at a large scale. In two distinct large-scale
experiments with real-world tasks, ENR significantly boosts click-through rates
and user ratings by at least 9% and 6% respectively compared to
state-of-the-art neural contextual bandit algorithms. Furthermore, it achieves
equivalent performance with at least 29% fewer user interactions compared to
the best-performing baseline algorithm. Remarkably, while accomplishing these
improvements, ENR demands orders of magnitude fewer computational resources
than neural contextual bandit baseline algorithms.
Related papers
- Learning Rate Optimization for Deep Neural Networks Using Lipschitz Bandits [9.361762652324968]
A properly tuned learning rate leads to faster training and higher test accuracy.
We propose a Lipschitz bandit-driven approach for tuning the learning rate of neural networks.
arXiv Detail & Related papers (2024-09-15T16:21:55Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
We propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem.
At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS.
arXiv Detail & Related papers (2023-05-14T11:57:42Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
We show that a $tildeO(tildedsqrtT)$ regret upper bound is still achievable under standard regularity conditions.
We perturb the rewards when updating the neural network to eliminate the need of explicit exploration.
arXiv Detail & Related papers (2022-01-24T19:10:22Z) - Initialization Matters: Regularizing Manifold-informed Initialization
for Neural Recommendation Systems [47.49065927541129]
We propose a new scheme for user embeddings called Laplacian Eigenmaps with Popularity-based Regularization for Isolated Data (LEPORID)
LEPORID endows the embeddings with information regarding multi-scale neighborhood structures on the data manifold and performs adaptive regularization to compensate for high embedding variance on the tail of the data distribution.
We show that existing neural systems with LEPORID often perform on par or better than KNN.
arXiv Detail & Related papers (2021-06-09T11:26:18Z) - An SMT-Based Approach for Verifying Binarized Neural Networks [1.4394939014120451]
We propose an SMT-based technique for verifying Binarized Neural Networks.
One novelty of our technique is that it allows the verification of neural networks that include both binarized and non-binarized components.
We implement our technique as an extension to the Marabou framework, and use it to evaluate the approach on popular binarized neural network architectures.
arXiv Detail & Related papers (2020-11-05T16:21:26Z) - Neural Thompson Sampling [94.82847209157494]
We propose a new algorithm, called Neural Thompson Sampling, which adapts deep neural networks for both exploration and exploitation.
At the core of our algorithm is a novel posterior distribution of the reward, where its mean is the neural network approximator, and its variance is built upon the neural tangent features of the corresponding neural network.
arXiv Detail & Related papers (2020-10-02T07:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.