Detect Depression from Social Networks with Sentiment Knowledge Sharing
- URL: http://arxiv.org/abs/2306.14903v1
- Date: Tue, 13 Jun 2023 05:16:18 GMT
- Title: Detect Depression from Social Networks with Sentiment Knowledge Sharing
- Authors: Yan Shi and Yao Tian and Chengwei Tong and Chunyan Zhu and Qianqian Li
and Mengzhu Zhang and Wei Zhao and Yong Liao and Pengyuan Zhou
- Abstract summary: We conduct a thorough investigation that unveils a strong correlation between depression and negative emotional states.
We propose a multi-task training framework, DeSK, which utilizes shared sentiment knowledge to enhance the efficacy of depression detection.
- Score: 8.466443392957961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social network plays an important role in propagating people's viewpoints,
emotions, thoughts, and fears. Notably, following lockdown periods during the
COVID-19 pandemic, the issue of depression has garnered increasing attention,
with a significant portion of individuals resorting to social networks as an
outlet for expressing emotions. Using deep learning techniques to discern
potential signs of depression from social network messages facilitates the
early identification of mental health conditions. Current efforts in detecting
depression through social networks typically rely solely on analyzing the
textual content, overlooking other potential information. In this work, we
conduct a thorough investigation that unveils a strong correlation between
depression and negative emotional states. The integration of such associations
as external knowledge can provide valuable insights for detecting depression.
Accordingly, we propose a multi-task training framework, DeSK, which utilizes
shared sentiment knowledge to enhance the efficacy of depression detection.
Experiments conducted on both Chinese and English datasets demonstrate the
cross-lingual effectiveness of DeSK.
Related papers
- Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - MASON-NLP at eRisk 2023: Deep Learning-Based Detection of Depression
Symptoms from Social Media Texts [0.0]
Depression is a mental health disorder that has a profound impact on people's lives.
Recent research suggests that signs of depression can be detected in the way individuals communicate.
Social media posts are a rich and convenient text source that we may examine for depressive symptoms.
arXiv Detail & Related papers (2023-10-17T02:34:34Z) - LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts [4.6071451559137175]
Low self-esteem and interpersonal needs have a major impact on depression and suicide attempts.
Individuals seek social connectedness on social media to boost and alleviate their loneliness.
We introduce a psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to study and detect low self-esteem on Reddit.
arXiv Detail & Related papers (2023-06-08T23:52:35Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Depression Detection Using Digital Traces on Social Media: A
Knowledge-aware Deep Learning Approach [17.07576768682415]
Depression is a common disease worldwide. It is difficult to diagnose and continues to be underdiagnosed.
Because depressed patients constantly share their symptoms, major life events, and treatments on social media, researchers are turning to user-generated digital traces on social media for depression detection.
We propose a Deep Knowledge-aware Depression Detection (DKDD) framework to accurately detect social media users at risk of depression and explain the critical factors that contribute to such detection.
arXiv Detail & Related papers (2023-03-06T20:08:07Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Mental Health Pandemic during the COVID-19 Outbreak: Social Media as a
Window to Public Mental Health [0.055248043932579184]
This study aims to identify and analyze depression-related dialogues on loneliness subreddits during the COVID-19 outbreak.
Our results showed significant increases in the volume of depression-related discussions where challenges were reported during the pandemic.
The current findings suggest the potential of social media to serve as a window for monitoring public mental health.
arXiv Detail & Related papers (2022-03-01T05:24:00Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
We use the depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018.
Our results reveal statistically significant differences between the depressed and non-depressed individuals.
Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms.
arXiv Detail & Related papers (2021-07-31T16:23:22Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
This paper enhances text representation with lexicon-based sentiment scores and latent topics.
It proposes using relation networks to detect suicidal ideation and mental disorders with related risk indicators.
arXiv Detail & Related papers (2020-04-16T11:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.