論文の概要: The Importance of Human-Labeled Data in the Era of LLMs
- arxiv url: http://arxiv.org/abs/2306.14910v1
- Date: Sun, 18 Jun 2023 12:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-02 13:27:13.586086
- Title: The Importance of Human-Labeled Data in the Era of LLMs
- Title(参考訳): llms時代におけるヒューマンラベルデータの重要性
- Authors: Yang Liu
- Abstract要約: 大規模言語モデル(LLM)の出現は、カスタマイズされた機械学習モデルの開発に革命をもたらした。
LLMの訓練と実施によって促進される自動化は、人間レベルのラベリング介入が、教師付き学習の時代と同じレベルの重要さをもはや持たないという議論や願望につながった。
- 参考スコア(独自算出の注目度): 6.2646642083846436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of large language models (LLMs) has brought about a revolution in
the development of tailored machine learning models and sparked debates on
redefining data requirements. The automation facilitated by the training and
implementation of LLMs has led to discussions and aspirations that human-level
labeling interventions may no longer hold the same level of importance as in
the era of supervised learning. This paper presents compelling arguments
supporting the ongoing relevance of human-labeled data in the era of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、カスタマイズされた機械学習モデルの開発に革命をもたらし、データ要件の再定義に関する議論を引き起こした。
LLMの訓練と実施によって促進される自動化は、人間レベルのラベリング介入が、教師付き学習の時代と同じレベルの重要さをもはや持たないという議論や願望につながった。
本稿では LLM 時代における人間ラベルデータの継続的な関連性を支持する説得力のある議論について述べる。
関連論文リスト
- Causality for Large Language Models [37.10970529459278]
数十億または数兆のパラメータを持つ大規模言語モデル(LLM)は、膨大なデータセットでトレーニングされており、一連の言語タスクで前例のない成功を収めている。
近年の研究では、LLMは因果オウムとして機能し、因果知識を真に理解したり応用したりすることなくリサイクリングすることができることが強調されている。
本調査は, ライフサイクルのすべての段階において, 因果性がどのようにLCMを強化するかを検討することを目的としている。
論文 参考訳(メタデータ) (2024-10-20T07:22:23Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation with LLMs [19.331803578031188]
本稿では,AI/MLモデルをアノテーションプロセスに統合するMILOフレームワークを提案する。
我々の研究は、専門家のアノテータと大規模言語モデル(LLM)の長所を生かした協調パラダイムを導入する。
マルチモーダルデータアノテーションに関する実験的な3つの研究は、MILOが処理時間を短縮し、データ品質を改善し、アノテータエクスペリエンスを向上させることの有効性を示している。
論文 参考訳(メタデータ) (2024-09-16T20:05:57Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - RKLD: Reverse KL-Divergence-based Knowledge Distillation for Unlearning Personal Information in Large Language Models [23.91608718129775]
我々は,大規模言語モデル(LLM)のための新しいtextbfReverse textbfKL-Divergence-based Knowledge textbfDistillation unlearningアルゴリズムであるRKLDを提案する。
我々は,実験におけるモデルの有用性を効果的に維持し,品質を著しく忘れることを実現した。
論文 参考訳(メタデータ) (2024-06-04T05:51:43Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - FreeAL: Towards Human-Free Active Learning in the Era of Large Language
Models [21.88032973150393]
大規模言語モデル(LLM)からのタスク固有知識の対話的蒸留とフィルタリング
8つのベンチマークデータセットの実験では、FreeALは人間の監督なしに、SLMとLLMのゼロショット性能を大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-11-27T08:23:08Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。