論文の概要: Unsupervised Episode Generation for Graph Meta-learning
- arxiv url: http://arxiv.org/abs/2306.15217v3
- Date: Tue, 21 May 2024 17:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 19:30:20.945513
- Title: Unsupervised Episode Generation for Graph Meta-learning
- Title(参考訳): グラフメタ学習のための教師なしエピソード生成
- Authors: Jihyeong Jung, Sangwoo Seo, Sungwon Kim, Chanyoung Park,
- Abstract要約: 教師なしグラフメタ学習によるFew-Shot Node-Classification(FSNC)タスクを解決するために、Norbors as Queries (NaQ)を提案する。
NaQはモデルに依存しないため、既存の教師なしグラフメタ学習手法は教師なしで訓練することができる。
- 参考スコア(独自算出の注目度): 18.12253165471773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Unsupervised Episode Generation method called Neighbors as Queries (NaQ) to solve the Few-Shot Node-Classification (FSNC) task by unsupervised Graph Meta-learning. Doing so enables full utilization of the information of all nodes in a graph, which is not possible in current supervised meta-learning methods for FSNC due to the label-scarcity problem. In addition, unlike unsupervised Graph Contrastive Learning (GCL) methods that overlook the downstream task to be solved at the training phase resulting in vulnerability to class imbalance of a graph, we adopt the episodic learning framework that allows the model to be aware of the downstream task format, i.e., FSNC. The proposed NaQ is a simple but effective unsupervised episode generation method that randomly samples nodes from a graph to make a support set, followed by similarity-based sampling of nodes to make the corresponding query set. Since NaQ is model-agnostic, any existing supervised graph meta-learning methods can be trained in an unsupervised manner, while not sacrificing much of their performance or sometimes even improving them. Extensive experimental results demonstrate the effectiveness of our proposed unsupervised episode generation method for graph meta-learning towards the FSNC task. Our code is available at: https://github.com/JhngJng/NaQ-PyTorch.
- Abstract(参考訳): 我々は、教師なしグラフメタラーニングによるFew-Shot Node-Classification (FSNC)タスクを解決するために、Neighbors as Queries (NaQ)と呼ばれる教師なしエピソード生成手法を提案する。
そのため、グラフ内の全てのノードの情報を完全に活用することが可能であり、これはラベル・スカシティの問題によるFSNCの現在の教師付きメタラーニングでは不可能である。
さらに,教師なしのグラフコントラスト学習(GCL)手法では,学習段階で解決すべきダウンストリームタスクを見落とし,グラフのクラス不均衡の脆弱性を生じさせるのとは対照的に,モデルのダウンストリームタスクフォーマット,すなわちFSNCを認識可能なエピソード学習フレームワークを採用する。
提案したNaQは、グラフからノードをランダムにサンプリングしてサポートセットを作成し、続いて類似性に基づくノードのサンプリングを行い、それに対応するクエリセットを作成する。
NaQはモデルに依存しないため、既存の教師付きグラフメタ学習手法は教師なしの方法で訓練することができる。
FSNCタスクに向けたグラフメタ学習における教師なしエピソード生成手法の有効性を実験的に検証した。
私たちのコードは、https://github.com/JhngJng/NaQ-PyTorch.comで利用可能です。
関連論文リスト
- Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks [10.794305560114903]
Self-Promptは、モデルとデータ自体に基づいたグラフのプロンプトフレームワークである。
非対称なグラフコントラスト学習を導入し、不均質に対処し、プリテキストと下流タスクの目的を整合させる。
11のベンチマークデータセットに対する広範な実験を行い、その優位性を実証する。
論文 参考訳(メタデータ) (2023-10-16T12:58:04Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - Steering Graph Neural Networks with Pinning Control [23.99873285634287]
ラベル付きデータのプロトタイプ(クラスセンター)を活用することで表現学習を監督する制御原理を提案する。
グラフ学習を離散的動的プロセスとして扱うことと、ラベル付きデータのプロトタイプを「望ましい」クラス表現として扱うことにより、自動制御理論からピンニング制御のアイデアを借用する。
実験により,提案したPCGCNモデルにより,深部GNNや他の競合するヘテロフィリ指向手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-03-02T13:50:23Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Graph-MLP: Node Classification without Message Passing in Graph [28.604893350871777]
グラフニューラルネットワーク(GNN)は、非ユークリッド構造データを扱う上での有効性を実証している。
最近の研究は主に強力なメッセージパッシングモジュールに焦点を当てているが、この記事では、メッセージパッシングモジュールは必要ないことを示す。
本稿では,グラフ構造を利用した教師信号を用いた,純粋な多層パーセプトロンベースのGraph-MLPを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:07:21Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。