Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space
- URL: http://arxiv.org/abs/2306.15223v1
- Date: Tue, 27 Jun 2023 05:48:58 GMT
- Title: Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space
- Authors: Ethan R. Elliott, David C. Aveline, Nicholas P. Bigelow, Patrick
Boegel, Sofia Botsi, Eric Charron, Jos\'e P. D'Incao, Peter Engels, Timoth\'e
Estrampes, Naceur Gaaloul, James R. Kellogg, James M. Kohel, Norman E. Lay,
Nathan Lundblad, Matthias Meister, Maren E. Mossman, Gabriel M\"uller, Holger
M\"uller, Kamal Oudrhiri, Leah E. Phillips, Annie Pichery, Ernst M. Rasel,
Charles A. Sackett, Matteo Sbroscia, Wolfgang P. Schleich, Robert J.
Thompson, and Jason R. Williams
- Abstract summary: We report the first simultaneous production of a dual species Bose-Einstein condensate in space.
We have also achieved the first space-borne demonstration of simultaneous atom interferometry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capability to reach ultracold atomic temperatures in compact instruments
has recently been extended into space. Ultracold temperatures amplify quantum
effects, while free-fall allows further cooling and longer interactions time
with gravity - the final force without a quantum description. On Earth, these
devices have produced macroscopic quantum phenomena such as Bose-Einstein
condensation (BECs), superfluidity, and strongly interacting quantum gases.
Quantum sensors interfering the superposition of two ultracold atomic isotopes
have tested the Universality of Free Fall (UFF), a core tenet of Einstein's
classical gravitational theory, at the $10^{-12}$ level. In space, cooling the
elements needed to explore the rich physics of strong interactions and
preparing the multiple species required for quantum tests of the UFF has
remained elusive. Here, utilizing upgraded capabilities of the multi-user Cold
Atom Lab (CAL) instrument within the International Space Station (ISS), we
report the first simultaneous production of a dual species Bose-Einstein
condensate in space (formed from $^{87}$Rb and $^{41}$K), observation of
interspecies interactions, as well as the production of $^{39}$K ultracold
gases. We have further achieved the first space-borne demonstration of
simultaneous atom interferometry with two atomic species ($^{87}$Rb and
$^{41}$K). These results are an important step towards quantum tests of UFF in
space, and will allow scientists to investigate aspects of few-body physics,
quantum chemistry, and fundamental physics in novel regimes without the
perturbing asymmetry of gravity.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the
International Space Station [0.2551676739403148]
NASA's Cold Atom Lab operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms.
Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures.
A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations.
Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time.
arXiv Detail & Related papers (2024-02-22T16:41:00Z) - Gravitationally-induced entanglement in cold atoms [3.8029070240258687]
gravitationally-induced entanglement (GIE) between two or more quantum matter systems is a promising route to testing quantum gravity.
Here, we consider, for the first time, GIE between two atomic gas interferometers as a test of quantum gravity.
We propose placing the two interferometers next to each other in parallel and looking for correlations in the number of atoms at the output ports as evidence of GIE and quantum gravity.
arXiv Detail & Related papers (2023-04-03T06:13:27Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Multi-band Bose-Einstein condensate at four-particle scattering
resonance [47.187609203210705]
We show that magnon quantization for thin samples results in a new multi-band magnon condensate.
The most stable multi-band condensate is found in a narrow regime favoured on account of a resonance in the scattering between two bands.
arXiv Detail & Related papers (2022-01-26T16:32:58Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Natural and magnetically induced entanglement of hyperfine-structure
states in atomic hydrogen [0.0]
The spectrum of atomic hydrogen has long been viewed as a Rosetta stone that decodes quantum mechanics.
We show that the hydrogen atom provides a fundamental building block of quantum information.
An external magnetic field can induce and sustain an HFS entanglement, against all the odds of thermal effects.
arXiv Detail & Related papers (2021-06-12T22:06:48Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Atomic Bose-Einstein condensate to molecular Bose-Einstein condensate
transition [7.369520570974015]
We report the formation of two-dimensional Bose-Einstein condensates (BECs) of spinning $g-$wave molecules by inducing pairing interactions in an atomic condensate.
Our work confirms the long-sought transition between atomic and molecular condensates, the bosonic analog of the BEC-BCS (Bardeen-Cooper-Schieffer superfluid) crossover in a Fermi gas.
arXiv Detail & Related papers (2020-06-27T06:51:31Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.