Atomic Bose-Einstein condensate to molecular Bose-Einstein condensate
transition
- URL: http://arxiv.org/abs/2006.15297v1
- Date: Sat, 27 Jun 2020 06:51:31 GMT
- Title: Atomic Bose-Einstein condensate to molecular Bose-Einstein condensate
transition
- Authors: Zhendong Zhang, Liangchao Chen, Kaixuan Yao and Cheng Chin
- Abstract summary: We report the formation of two-dimensional Bose-Einstein condensates (BECs) of spinning $g-$wave molecules by inducing pairing interactions in an atomic condensate.
Our work confirms the long-sought transition between atomic and molecular condensates, the bosonic analog of the BEC-BCS (Bardeen-Cooper-Schieffer superfluid) crossover in a Fermi gas.
- Score: 7.369520570974015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preparation of molecular quantum gas promises novel applications including
quantum control of chemical reactions, precision measurements, quantum
simulation and quantum information processing. Experimental preparation of
colder and denser molecular samples, however, is frequently hindered by fast
inelastic collisions that heat and deplete the population. Here we report the
formation of two-dimensional Bose-Einstein condensates (BECs) of spinning
$g-$wave molecules by inducing pairing interactions in an atomic condensate.
The trap geometry and the low temperature of the molecules help reducing
inelastic loss to ensure thermal equilibrium. We determine the molecular
scattering length to be $+220(30)$~Bohr and investigate the unpairing dynamics
in the strong coupling regime. Our work confirms the long-sought transition
between atomic and molecular condensates, the bosonic analog of the BEC-BCS
(Bardeen-Cooper-Schieffer superfluid) crossover in a Fermi gas.
Related papers
- Observation of Bose-Einstein Condensation of Dipolar Molecules [2.820929542705023]
We report on the realization of a Bose-Einstein condensate (BEC) of dipolar molecules.
BECs with a condensate fraction of 60 % and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 seconds.
This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far.
arXiv Detail & Related papers (2023-12-18T06:40:54Z) - The dressed molecules theory for the quasi-two-dimensional quantum
anomaly [5.168364003837908]
The dressed molecules theory is used to describe the two-dimensional quantum anomaly of breathing mode in the recent experimental system.
We employ the dressed molecules states to characterize the axial excited states and the Feshbach molecular states.
Our establishment of the dressed molecules theory for 2D fermions is crucial to understand the conformal anomaly in the quasi low-dimensional quantum systems.
arXiv Detail & Related papers (2023-05-12T02:53:24Z) - Collisionally Stable Gas of Bosonic Dipolar Ground State Molecules [2.686226765720665]
We stabilize a bosonic gas of strongly dipolar NaCs molecules against inelastic losses via microwave shielding.
We also measure high elastic scattering rates, a result of strong dipolar interactions, and observe the anisotropic nature of dipolar collisions.
This work is a critical step towards the creation of a Bose-Einstein condensate of dipolar molecules.
arXiv Detail & Related papers (2023-03-29T16:51:07Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Evaporation of microwave-shielded polar molecules to quantum degeneracy [1.8133492406483585]
We demonstrate cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding.
The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave.
This large elastic-to-inelastic collision ratio allows us to cool the molecular gas down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature.
arXiv Detail & Related papers (2022-01-13T18:53:27Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dipolar evaporation of reactive molecules to below the Fermi temperature [2.9989215527241453]
Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
arXiv Detail & Related papers (2020-07-23T22:02:59Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.