論文の概要: Machine learning in solar physics
- arxiv url: http://arxiv.org/abs/2306.15308v1
- Date: Tue, 27 Jun 2023 08:55:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 14:10:45.516464
- Title: Machine learning in solar physics
- Title(参考訳): 太陽物理学における機械学習
- Authors: A. Asensio Ramos, M. C. M. Cheung, I. Chifu, R. Gafeira
- Abstract要約: 太陽物理学における機械学習の応用は、太陽の大気で起こる複雑な過程の理解を大幅に強化する可能性がある。
深層学習などの手法を用いることで、私たちは現在、太陽観測から大量のデータを分析する立場にある。
太陽フレアのような爆発的な現象の理解を深め、地球環境に強い影響を与える可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning in solar physics has the potential to
greatly enhance our understanding of the complex processes that take place in
the atmosphere of the Sun. By using techniques such as deep learning, we are
now in the position to analyze large amounts of data from solar observations
and identify patterns and trends that may not have been apparent using
traditional methods. This can help us improve our understanding of explosive
events like solar flares, which can have a strong effect on the Earth
environment. Predicting hazardous events on Earth becomes crucial for our
technological society. Machine learning can also improve our understanding of
the inner workings of the sun itself by allowing us to go deeper into the data
and to propose more complex models to explain them. Additionally, the use of
machine learning can help to automate the analysis of solar data, reducing the
need for manual labor and increasing the efficiency of research in this field.
- Abstract(参考訳): 太陽物理学における機械学習の応用は、太陽の大気で起こる複雑な過程の理解を大幅に強化する可能性がある。
深層学習などの手法を用いることで,太陽観測から大量のデータを分析し,従来の手法では明らかではなかったパターンや傾向を識別する立場にある。
これは、地球環境に強い影響を与える太陽フレアのような爆発的な事象に対する理解を改善するのに役立ちます。
地球上での危険事象の予測は、我々の技術社会にとって不可欠である。
機械学習は、データをさらに深く理解し、それらを説明するためのより複雑なモデルを提案することによって、太陽内部の動作に対する理解を向上させることができる。
さらに、機械学習を利用することで、太陽データの分析を自動化し、手作業の必要を減らし、この分野の研究の効率を高めることができる。
関連論文リスト
- Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
DDPM(Denoising Diffusion Probabilistic Models)を用いた画像と画像の変換による視線(LoS)磁気グラムの進化予測手法を提案する。
提案手法は,画像品質の「計算機科学メトリクス」と物理精度の「物理メトリクス」を組み合わせて,モデル性能の評価を行う。
その結果, DDPMは, 太陽磁場の動的範囲, 磁束, 活動領域の大きさなどの物理的特徴の維持に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-07-16T12:28:10Z) - Why Reinforcement Learning in Energy Systems Needs Explanations [0.0]
本稿では,エネルギーシステムにおける強化技術の適用と,これらのモデルの説明がいかに役立つかについて論じる。
経済発展に伴い、インフラの複雑さは劇的に増大し、同様に化石燃料から再生可能エネルギーへのシフトに伴い、このようなシステムには恐ろしい必要性がある。
論文 参考訳(メタデータ) (2024-05-29T07:09:00Z) - Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
コンピュータビジョンや機械学習には、現実の問題が増えている。
衛星データから地球観測を行う場合、一つの観測層を予測できることが重要である。
論文 参考訳(メタデータ) (2024-02-12T20:08:58Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - A Vision for Semantically Enriched Data Science [19.604667287258724]
ドメイン知識の活用やデータセマンティクスといった重要な分野は、ほとんど自動化されていない分野です。
データサイエンスの自動化のための新しいツールと組み合わせて、データに対する“セマンティック”な理解と推論を活用することが、一貫性と説明可能なデータ拡張と変換にどのように役立つか、私たちは考えています。
論文 参考訳(メタデータ) (2023-03-02T16:03:12Z) - Elements of effective machine learning datasets in astronomy [1.552171919003135]
天文学における効果的な機械学習データセットの要素を同定する。
これらの要素が天文学的な応用に重要である理由と、それを実現する方法について議論する。
論文 参考訳(メタデータ) (2022-11-25T23:37:24Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - DeepSun: Machine-Learning-as-a-Service for Solar Flare Prediction [3.994605741665177]
我々は、Web上で太陽フレアを予測するための、DeepSunと呼ばれる機械学習・アズ・ア・サービスフレームワークを提案する。
DeepSunシステムは、このマルチクラス予測問題に対処するために、いくつかの機械学習アルゴリズムを使用している。
私たちの知る限り、DeepSunはインターネットを通じて太陽フレアを予測できる最初のMLツールです。
論文 参考訳(メタデータ) (2020-09-04T03:41:50Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。