論文の概要: LeCo: Lightweight Compression via Learning Serial Correlations
- arxiv url: http://arxiv.org/abs/2306.15374v1
- Date: Tue, 27 Jun 2023 10:46:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:40:27.939493
- Title: LeCo: Lightweight Compression via Learning Serial Correlations
- Title(参考訳): LeCo: シリアル相関学習による軽量圧縮
- Authors: Yihao Liu, Xinyu Zeng, Huanchen Zhang
- Abstract要約: 軽量データ圧縮は、カラムストアが分析クエリのパフォーマンスを向上する鍵となる技術である。
本稿では,機械学習を用いて,値列内のシリアル冗長を自動的に除去し,優れた圧縮比と圧縮性能を同時に達成するフレームワークであるLeCo(Learted Compression)を提案する。
LeCoを広く使われているアプリケーションに組み込むと、Parquetファイルのフィルタスキャンで最大3.9倍のスピードで、Rocksdbのスループットは16%向上する。
- 参考スコア(独自算出の注目度): 12.651050295711636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lightweight data compression is a key technique that allows column stores to
exhibit superior performance for analytical queries. Despite a comprehensive
study on dictionary-based encodings to approach Shannon's entropy, few prior
works have systematically exploited the serial correlation in a column for
compression. In this paper, we propose LeCo (i.e., Learned Compression), a
framework that uses machine learning to remove the serial redundancy in a value
sequence automatically to achieve an outstanding compression ratio and
decompression performance simultaneously. LeCo presents a general approach to
this end, making existing (ad-hoc) algorithms such as Frame-of-Reference (FOR),
Delta Encoding, and Run-Length Encoding (RLE) special cases under our
framework. Our microbenchmark with three synthetic and six real-world data sets
shows that a prototype of LeCo achieves a Pareto improvement on both
compression ratio and random access speed over the existing solutions. When
integrating LeCo into widely-used applications, we observe up to 3.9x speed up
in filter-scanning a Parquet file and a 16% increase in Rocksdb's throughput.
- Abstract(参考訳): 軽量データ圧縮は、カラムストアが分析クエリのパフォーマンスを向上する鍵となる技術である。
シャノンのエントロピーに近づくための辞書ベースのエンコーディングに関する包括的な研究にもかかわらず、圧縮のための列のシリアル相関を体系的に利用した先行研究はほとんどない。
本稿では,機械学習を用いて値列の連続冗長性を自動的に除去し,優れた圧縮率と減圧縮性能を同時に達成するフレームワークであるleco(すなわち学習圧縮)を提案する。
LeCoはこの目的に対して一般的なアプローチを示し、既存の(アドホックな)アルゴリズムであるFrame-of-Reference(FOR)、Delta Encoding(Delta Encoding)、Run-Length Encoding(RLE)をフレームワークの下に置く。
3つの合成データと6つの実世界のデータセットを持つマイクロベンチマークは、lecoのプロトタイプが既存のソリューションよりも圧縮比とランダムアクセス速度の両方においてparetoの改善を達成していることを示している。
LeCoを広く使われているアプリケーションに組み込むと、Parquetファイルのフィルタスキャンで最大3.9倍のスピードで、Rocksdbのスループットは16%向上する。
関連論文リスト
- Lightweight Correlation-Aware Table Compression [58.50312417249682]
$texttVirtual$は、既存のオープンフォーマットとシームレスに統合されるフレームワークである。
data-govデータセットの実験によると、$texttVirtual$はApache Parquetと比較してファイルサイズを最大40%削減する。
論文 参考訳(メタデータ) (2024-10-17T22:28:07Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models [21.025001473355996]
大規模言語モデル(LLM)の即時圧縮問題について定式化する。
ブラックボックスモデルのハードプロンプトを生成するトークンレベルのプロンプト圧縮手法を統合するためのフレームワークを提案する。
本稿では,現在の高速圧縮法の性能と最適戦略との間に大きなギャップがあることを述べる。
論文 参考訳(メタデータ) (2024-07-22T09:40:13Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - LoCoCo: Dropping In Convolutions for Long Context Compression [77.26610232994508]
本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
論文 参考訳(メタデータ) (2024-06-08T01:35:11Z) - Long Context Compression with Activation Beacon [22.054232261437186]
Activation Beaconは、トランスフォーマーベースのLLM用のプラグインモジュールである。
長いコンテキストの効率的な、効率的、柔軟な圧縮をターゲットとしている。
推論時間の2倍の高速化と、KVキャッシュのメモリコストの8倍の削減を実現している。
論文 参考訳(メタデータ) (2024-01-07T11:57:40Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - Context Compression for Auto-regressive Transformers with Sentinel
Tokens [37.07722536907739]
本稿では,特定のトークンの中間活性化をコンパクトに段階的に圧縮できるプラグイン・アンド・プレイ方式を提案する。
ドメイン内言語モデリングとゼロショットオープンエンド文書生成の両方の実験は、我々のアプローチの利点を実証している。
論文 参考訳(メタデータ) (2023-10-12T09:18:19Z) - Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler
Alignment of Embeddings for Asymmetrical dual encoders [89.29256833403169]
我々は,高密度検索手法の推論効率を高めるための効率的かつ正確な手法であるKulback Leibler Alignment of Embeddings (KALE)を紹介した。
KALEは、バイエンコーダトレーニング後の従来の知識蒸留を拡張し、完全なリトレーニングやインデックス生成なしに効率的なクエリエンコーダ圧縮を可能にする。
KALEと非対称トレーニングを用いることで、3倍高速な推論を持つにもかかわらず、DistilBERTの性能を超えるモデルを生成することができる。
論文 参考訳(メタデータ) (2023-03-31T15:44:13Z) - Efficient Data Compression for 3D Sparse TPC via Bicephalous
Convolutional Autoencoder [8.759778406741276]
この研究は、textitBicephalous Convolutional AutoEncoder (BCAE)と呼ばれる、空間と回帰を同時に解決するデュアルヘッドオートエンコーダを導入している。
これはMGARD、SZ、ZFPといった従来のデータ圧縮手法と比較して圧縮忠実度と比の両方の利点を示している。
論文 参考訳(メタデータ) (2021-11-09T21:26:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。