論文の概要: What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2306.15521v1
- Date: Tue, 27 Jun 2023 14:47:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:01:19.664036
- Title: What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation
- Title(参考訳): 意味:ゼロショットセマンティックセマンティックセグメンテーションのマルチドメイン評価
- Authors: Benedikt Blumenstiel, Johannes Jakubik, Hilde K\"uhne and Michael
V\"ossing
- Abstract要約: セマンティック(MESS)のマルチドメイン評価のためのベンチマークを構築した。
MESSは、医学、工学、地球モニタリング、生物学、農業など、幅広い分野固有のデータセットのパフォーマンスを総合的に分析することを可能にする。
提案したMESSベンチマークを用いて,最近発表された8つのモデルを評価し,ゼロショット転送モデルの性能評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While semantic segmentation has seen tremendous improvements in the past,
there is still significant labeling efforts necessary and the problem of
limited generalization to classes that have not been present during training.
To address this problem, zero-shot semantic segmentation makes use of large
self-supervised vision-language models, allowing zero-shot transfer to unseen
classes. In this work, we build a benchmark for Multi-domain Evaluation of
Semantic Segmentation (MESS), which allows a holistic analysis of performance
across a wide range of domain-specific datasets such as medicine, engineering,
earth monitoring, biology, and agriculture. To do this, we reviewed 120
datasets, developed a taxonomy, and classified the datasets according to the
developed taxonomy. We select a representative subset consisting of 22 datasets
and propose it as the MESS benchmark. We evaluate eight recently published
models on the proposed MESS benchmark and analyze characteristics for the
performance of zero-shot transfer models. The toolkit is available at
https://github.com/blumenstiel/MESS.
- Abstract(参考訳): セマンティックセグメンテーションは過去にも大幅に改善されてきたが、いまだに重要なラベル付けの取り組みがあり、訓練中に存在しないクラスへの限定的な一般化の問題がある。
この問題を解決するために、ゼロショットセマンティックセグメンテーションは大きな自己教師付き視覚言語モデルを使用し、ゼロショットを見えないクラスに転送することができる。
本研究では、医学、工学、地球観測、生物学、農業など、幅広い分野にまたがるデータセットを対象とした総合的なパフォーマンス分析を可能にする意味セグメンテーション(mess)の多領域評価のためのベンチマークを構築した。
そこで我々は,120のデータセットをレビューし,分類法を開発し,開発した分類法に従ってデータセットを分類した。
我々は、22のデータセットからなる代表サブセットを選択し、MESSベンチマークとして提案する。
本研究では,提案するメッセベンチマークの8つのモデルを評価し,ゼロショット転送モデルの性能特性を解析した。
ツールキットはhttps://github.com/blumenstiel/MESSで入手できる。
関連論文リスト
- Joint semi-supervised and contrastive learning enables zero-shot domain-adaptation and multi-domain segmentation [1.5393913074555419]
SegCLRは、さまざまなドメインにまたがってボリューム画像を分割するために設計された汎用的なフレームワークである。
総合評価により,SegCLRの優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-08T18:10:59Z) - Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image
Segmentation [17.69933345468061]
医用画像セグメンテーションのための強力なディープラーニングモデルをトレーニングする上で、不足は大きな障害となっている。
textbfVersatile textbfSemi-supervised framework を導入する。
論文 参考訳(メタデータ) (2023-11-20T11:35:52Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models [7.452422412106768]
リモートセマンティックセマンティックセグメンテーションのためのText2Segという新しい手法を提案する。
自動プロンプト生成プロセスを使用することで、広範なアノテーションへの依存を克服する。
我々は,Text2SegがバニラSAMモデルと比較してゼロショット予測性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2023-04-20T18:39:41Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。