論文の概要: PoseDiffusion: Solving Pose Estimation via Diffusion-aided Bundle
Adjustment
- arxiv url: http://arxiv.org/abs/2306.15667v2
- Date: Wed, 28 Jun 2023 10:57:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 11:13:30.897727
- Title: PoseDiffusion: Solving Pose Estimation via Diffusion-aided Bundle
Adjustment
- Title(参考訳): PoseDiffusion: Diffusion-aided Bundle Adjustment によるPose推定の解法
- Authors: Jianyuan Wang, Christian Rupprecht, David Novotny
- Abstract要約: 本稿では,確率的拡散フレームワーク内での運動構造(SfM)問題を定式化することを提案する。
本稿では,従来のSfMパイプラインよりもPoseDiffusionが大幅に改善されていることを示す。
本手法は,さらなるトレーニングを行なわずにデータセットをまたいで一般化できることが観察された。
- 参考スコア(独自算出の注目度): 16.41020371586304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera pose estimation is a long-standing computer vision problem that to
date often relies on classical methods, such as handcrafted keypoint matching,
RANSAC and bundle adjustment. In this paper, we propose to formulate the
Structure from Motion (SfM) problem inside a probabilistic diffusion framework,
modelling the conditional distribution of camera poses given input images. This
novel view of an old problem has several advantages. (i) The nature of the
diffusion framework mirrors the iterative procedure of bundle adjustment. (ii)
The formulation allows a seamless integration of geometric constraints from
epipolar geometry. (iii) It excels in typically difficult scenarios such as
sparse views with wide baselines. (iv) The method can predict intrinsics and
extrinsics for an arbitrary amount of images. We demonstrate that our method
PoseDiffusion significantly improves over the classic SfM pipelines and the
learned approaches on two real-world datasets. Finally, it is observed that our
method can generalize across datasets without further training. Project page:
https://posediffusion.github.io/
- Abstract(参考訳): カメラポーズ推定は、従来は手作りのキーポイントマッチング、RANSAC、バンドル調整といった古典的な手法に依存していたコンピュータビジョンの問題である。
本稿では,入力画像に対するカメラポーズの条件分布をモデル化し,確率拡散フレームワーク内の運動からの構造 (sfm) を定式化する。
古い問題に対するこの新しい見方にはいくつかの利点がある。
(i)拡散フレームワークの性質は、バンドル調整の反復手順を反映している。
(ii)この定式化はエピポーラ幾何学からの幾何学的制約のシームレスな統合を可能にする。
(iii)広い基準線を持つスパースビューのような典型的な難易度シナリオに優れる。
(iv)任意の量の画像に対して内在性及び外在性を予測することができる。
提案手法は,従来のSfMパイプラインと実世界の2つのデータセットに対する学習アプローチよりも大幅に改善されていることを示す。
最後に,本手法がさらなるトレーニングを行なわずにデータセットをまたいで一般化できることが観察された。
プロジェクトページ: https://posediffusion.github.io/
関連論文リスト
- ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation [17.097170273209333]
画像からカメラのポーズを復元することは、3Dコンピュータビジョンの基本課題である。
最近のデータ駆動型アプローチは、6DoFカメラのポーズを後退させたり、回転を確率分布として定式化したりすることで、カメラのポーズを直接出力することを目指している。
本稿では, ジェネレータと識別器を用いて2つのフレームワークを統合することを提案する。
論文 参考訳(メタデータ) (2024-08-16T22:45:46Z) - RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
画像縫合整形のための新しい拡散学習フレームワーク textbfRecDiffusion を提案する。
このフレームワークは運動拡散モデル(MDM)を組み合わせて運動場を生成し、縫合された画像の不規則な境界から幾何学的に修正された中間体へ効果的に遷移する。
論文 参考訳(メタデータ) (2024-03-28T06:22:45Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
カメラのポーズを推定することは3D再構成の基本的な課題であり、まばらにサンプリングされたビューを考えると依然として困難である。
本稿では,カメラを光束として扱うカメラポーズの分散表現を提案する。
提案手法は回帰法と拡散法の両方で,CO3Dのカメラポーズ推定における最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-22T18:59:56Z) - Rotation-Constrained Cross-View Feature Fusion for Multi-View
Appearance-based Gaze Estimation [16.43119580796718]
本研究は、一般化可能な多視点視線推定タスクと、この問題に対処するためのクロスビュー特徴融合法を提案する。
ペア画像に加えて,2台のカメラ間の相対回転行列を付加入力とする。
提案するネットワークは,相対回転を制約として,回転可能な特徴表現を抽出することを学ぶ。
論文 参考訳(メタデータ) (2023-05-22T04:29:34Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - GECCO: Geometrically-Conditioned Point Diffusion Models [60.28388617034254]
テキスト上で条件付き画像を生成する拡散モデルが最近,コンピュータビジョンコミュニティをはるかに超えている。
ここでは、無条件および条件付きの両方の点雲を画像で生成するという、関連する問題に取り組む。
後者では,スパーク画像の特徴を点雲に投影することに基づく,幾何学的動機付けによる新しい条件付け手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T13:45:44Z) - DeepMLE: A Robust Deep Maximum Likelihood Estimator for Two-view
Structure from Motion [9.294501649791016]
動きからの2次元構造(SfM)は3次元再構成と視覚SLAM(vSLAM)の基礎となる。
本稿では,2視点SfM問題を最大最大推定(MLE)として定式化し,DeepMLEと表記されるフレームワークを用いて解いた。
提案手法は,最先端の2ビューSfM手法よりも精度と一般化能力において優れる。
論文 参考訳(メタデータ) (2022-10-11T15:07:25Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
本稿では、任意のオブジェクトの複数の画像からカメラ視点を推定するデータ駆動手法について述べる。
本手法は, 画像の鮮明さから, 最先端のSfM法とSLAM法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-11T17:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。