論文の概要: Utilizing Segment Anything Model For Assessing Localization of GRAD-CAM
in Medical Imaging
- arxiv url: http://arxiv.org/abs/2306.15692v1
- Date: Sat, 24 Jun 2023 19:54:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 17:12:18.137151
- Title: Utilizing Segment Anything Model For Assessing Localization of GRAD-CAM
in Medical Imaging
- Title(参考訳): 医用画像におけるGRAD-CAMの局在評価のためのセグメンションモデルの利用
- Authors: Evan Kellener, Ihina Nath, An Ngo, Thomas Nguyen, Joshua Schuman, Coen
Adler, Arnav Kartikeya
- Abstract要約: 衛生マップアルゴリズムは、医療画像を含む複数の分野に適用されている。
現在の研究は、画像内の医学的異常に基づいて、唾液マップの局所化を評価することで能力を調べる。
本稿では,既存のメトリクスの精度を高めるために,SAM(Seegment Anything Model)の利用を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The introduction of saliency map algorithms as an approach for assessing the
interoperability of images has allowed for a deeper understanding of current
black-box models with Artificial Intelligence. Their rise in popularity has led
to these algorithms being applied in multiple fields, including medical
imaging. With a classification task as important as those in the medical
domain, a need for rigorous testing of their capabilities arises. Current works
examine capabilities through assessing the localization of saliency maps upon
medical abnormalities within an image, through comparisons with human
annotations. We propose utilizing Segment Anything Model (SAM) to both further
the accuracy of such existing metrics, while also generalizing beyond the need
for human annotations. Our results show both high degrees of similarity to
existing metrics while also highlighting the capabilities of this methodology
to beyond human-annotation. Furthermore, we explore the applications (and
challenges) of SAM within the medical domain, including image pre-processing
before segmenting, natural language proposals to SAM in the form of CLIP-SAM,
and SAM accuracy across multiple medical imaging datasets.
- Abstract(参考訳): 画像の相互運用性を評価するアプローチとしてのサリエンシマップアルゴリズムの導入は、現在のブラックボックスモデルと人工知能の深い理解を可能にした。
その人気が高まり、これらのアルゴリズムは医療画像を含む複数の分野に適用された。
医学領域のそれと同じくらい重要な分類タスクでは、その能力の厳格なテストの必要性が生じる。
現在の研究は、画像内の医学的異常に対する唾液マップの局所化を評価することで、人間のアノテーションとの比較を通して能力を調べる。
我々は、既存のメトリクスの精度を高めるだけでなく、人間のアノテーションの必要性を超えて一般化するセグメント・エバンス・モデル(sam)の利用を提案する。
以上の結果から,既存の指標と高い類似性を示すとともに,この手法が人間アノテーションを超える能力を強調した。
さらに,領域内におけるSAMの応用(および課題)について検討し,領域分割前の画像前処理,CLIP-SAM形式のSAMへの自然言語提案,複数の医用画像データセット間のSAM精度について検討する。
関連論文リスト
- Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
最近のSAM(Segment Anything Model)の導入は、プロンプト駆動パラダイムのイメージセグメンテーション領域への注目すべき拡張を意味している。
本稿では,SAMの有効性を医療画像分割タスクに拡張するための最近の取り組みについて概観する。
医療画像セグメンテーションにおけるSAMの役割について,今後の研究の道筋を探る。
論文 参考訳(メタデータ) (2024-01-07T14:25:42Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Towards Segment Anything Model (SAM) for Medical Image Segmentation: A
Survey [8.76496233192512]
本稿では,セグメンテーションモデルの成功を医療画像のセグメンテーションタスクに拡張する取り組みについて論じる。
医用画像解析の基礎モデルを開発するために、将来の研究を導くために多くの洞察が導かれる。
論文 参考訳(メタデータ) (2023-05-05T16:48:45Z) - Zero-shot performance of the Segment Anything Model (SAM) in 2D medical
imaging: A comprehensive evaluation and practical guidelines [0.13854111346209866]
Segment Anything Model (SAM)は、大規模なトレーニングデータセットを使用して、ほぼすべてのオブジェクトをセグメント化する。
この結果から,SAMのゼロショット性能は,現在の最先端技術に匹敵するものであることが判明した。
我々は、一貫して堅牢な結果をもたらしながら、最小限の相互作用を必要とする実践的ガイドラインを提案する。
論文 参考訳(メタデータ) (2023-04-28T22:07:24Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
9つの医用画像セグメンテーションベンチマークにおいて,定量および定性的ゼロショットセグメンテーションの結果を報告する。
本研究は,医用画像における一般視基盤モデルの汎用性を示すものである。
論文 参考訳(メタデータ) (2023-04-25T08:07:59Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
医用画像のセグメンテーションにおけるセグメンテーションモデル(Segment Anything Model)のゼロショット機能の評価を行った。
SAMはCTデータによく対応し,半自動セグメンテーションツールの進歩の触媒となる可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-10T18:20:29Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。