論文の概要: Differentially Private Distributed Estimation and Learning
- arxiv url: http://arxiv.org/abs/2306.15865v5
- Date: Thu, 28 Mar 2024 16:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:02:51.257097
- Title: Differentially Private Distributed Estimation and Learning
- Title(参考訳): 個人別分散推定と学習
- Authors: Marios Papachristou, M. Amin Rahimian,
- Abstract要約: ネットワーク環境における分散推定と学習の問題について検討する。
エージェントは、プライベートに観察されたサンプルからランダム変数の未知の統計特性を推定するために情報を交換する。
エージェントは、自分のプライベートな観察に関する情報を交換することで、未知の量を見積もることができるが、プライバシー上のリスクにも直面する。
- 参考スコア(独自算出の注目度): 2.4401219403555814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study distributed estimation and learning problems in a networked environment where agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. The agents can collectively estimate the unknown quantities by exchanging information about their private observations, but they also face privacy risks. Our novel algorithms extend the existing distributed estimation literature and enable the participating agents to estimate a complete sufficient statistic from private signals acquired offline or online over time and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints, both in an offline and online manner. We provide convergence rate analysis and tight finite-time convergence bounds. We show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent's sensitivity to their signal and network characteristics. Our algorithms are amenable to dynamic topologies and balancing privacy and accuracy trade-offs. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes and show that our method outperforms existing first-order, privacy-aware, distributed optimization methods.
- Abstract(参考訳): エージェントが未知の確率変数の統計的特性をプライベートに観測したサンプルから推定するために情報を交換するネットワーク環境において,分散推定と学習の問題について検討する。
エージェントは、プライベートな観察に関する情報を交換することで、その未知の量を総合的に見積もることができるが、プライバシー上のリスクにも直面する。
提案アルゴリズムは,既存の分散推定文献を拡張し,オフラインあるいはオンラインで取得したプライベート信号から十分な統計量を推定し,それらの信号やネットワーク近傍のプライバシーを維持する。
これは、オフラインとオンラインの両方の方法で、差分プライバシー(DP)制約の下で交換された推定値にノイズを加える調整されたランダム化スキームによる線形アグリゲーションスキームによって達成される。
収束速度解析と厳密な有限時間収束境界を提供する。
最良推定値に対する収束時間を最小化するノイズは、各エージェントの信号やネットワーク特性に対する感度に対応するパラメータを持つラプラスノイズであることを示す。
私たちのアルゴリズムは、動的なトポロジや、プライバシと精度のトレードオフのバランスに適しています。
最後に、我々の理論結果を補完し、検証するために、米国電力グリッドネットワークとドイツ家庭の電力消費データを用いて、すべてのプライバシー体制下での電力ステーションや家庭の平均消費電力を推定し、我々の手法が既存の一階、プライバシーに配慮した分散最適化手法より優れていることを示す。
関連論文リスト
- Privacy-Preserving Set-Based Estimation Using Differential Privacy and Zonotopes [2.206168301581203]
大規模サイバー物理システムでは、状態推定を行うために空間分布センサの協調が必要であることが多い。
プライバシの懸念は、機密性の高い測定結果をクラウド推定器に開示することにある。
本稿では,推定集合における真の状態の保持と,感度測定のための差分プライバシーを保証する,差分プライベートな集合ベース推定プロトコルを提案する。
論文 参考訳(メタデータ) (2024-08-30T13:05:38Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
信頼できない無線ネットワークの異なるノードに分散するベクトルの平均をプライベートに推定する問題を考える。
半分散的なセットアップでは、ノードは隣人と協力してローカルコンセンサスを計算し、中央サーバにリレーする。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2024-06-06T06:12:15Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Data Analytics with Differential Privacy [0.0]
我々は分散データとストリーミングデータを解析するための差分プライベートアルゴリズムを開発した。
分散モデルでは、学習の特定の問題 -- 分散形式で -- がデータのグローバルモデルであると考えている。
私たちは、ストリーミングモデル、ユーザーレベルのパンプライバシに対して、最も強力なプライバシー保証の1つを提供しています。
論文 参考訳(メタデータ) (2023-07-20T17:43:29Z) - Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling [14.066813980992132]
データプライバシの意識の高まりに伴い、プライベートバージョンの信頼区間の開発が注目されている。
最近の研究は個人的信頼区間で行われているが、個人的信頼区間では厳密な方法論が研究されていない。
階層化されたランダムサンプリングの下で,信頼区間を構成するための3つの差分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-19T21:25:41Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Secure and Differentially Private Bayesian Learning on Distributed Data [17.098036331529784]
本稿では,事前条件付きランゲヴィンダイナミクスとRMSpropを併用した分散ベイズ学習手法を提案する。
提案手法を分散データのロジスティック回帰と生存分析に応用し, 集中型手法と比較して, 予測精度と時間複雑性の観点からその可能性を示した。
論文 参考訳(メタデータ) (2020-05-22T05:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。