A Unified View of Deep Learning for Reaction and Retrosynthesis
Prediction: Current Status and Future Challenges
- URL: http://arxiv.org/abs/2306.15890v1
- Date: Wed, 28 Jun 2023 03:15:55 GMT
- Title: A Unified View of Deep Learning for Reaction and Retrosynthesis
Prediction: Current Status and Future Challenges
- Authors: Ziqiao Meng, Peilin Zhao, Yang Yu, Irwin King
- Abstract summary: Reaction and retrosynthesis prediction are fundamental tasks in computational chemistry.
Various deep learning approaches have been proposed to tackle these problems.
This paper is the first comprehensive and systematic survey that seeks to provide a unified understanding of reaction and retrosynthesis prediction.
- Score: 59.41636061300571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reaction and retrosynthesis prediction are fundamental tasks in computational
chemistry that have recently garnered attention from both the machine learning
and drug discovery communities. Various deep learning approaches have been
proposed to tackle these problems, and some have achieved initial success. In
this survey, we conduct a comprehensive investigation of advanced deep
learning-based models for reaction and retrosynthesis prediction. We summarize
the design mechanisms, strengths, and weaknesses of state-of-the-art
approaches. Then, we discuss the limitations of current solutions and open
challenges in the problem itself. Finally, we present promising directions to
facilitate future research. To our knowledge, this paper is the first
comprehensive and systematic survey that seeks to provide a unified
understanding of reaction and retrosynthesis prediction.
Related papers
- A Self-feedback Knowledge Elicitation Approach for Chemical Reaction Predictions [24.80165173525286]
We introduce a data-curated self-feedback knowledge elicitation approach.
We employ adaptive prompt learning to infuse the prior knowledge into the large language model.
This research offers a novel paradigm for knowledge elicitation in scientific research.
arXiv Detail & Related papers (2024-04-15T09:26:33Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery.
While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset.
We construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps.
arXiv Detail & Related papers (2024-03-07T15:26:23Z) - AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
via Contrastive Learning [45.379791270351184]
RMechRP is a new deep learning-based reaction predictor system.
We develop and train models using RMechDB, a public database of radical reactions.
Our results demonstrate the effectiveness of RMechRP in providing accurate and interpretable predictions.
arXiv Detail & Related papers (2023-11-02T09:47:27Z) - A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers [76.51245425667845]
Relation extraction (RE) involves identifying the relations between entities from underlying content.
Deep neural networks have dominated the field of RE and made noticeable progress.
This survey is expected to facilitate researchers' collaborative efforts to address the challenges of real-world RE systems.
arXiv Detail & Related papers (2023-06-03T08:39:25Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Deep Learning Methods for Small Molecule Drug Discovery: A Survey [6.61864409597243]
We review various applications of deep learning in drug discovery.
These include molecule generation, molecular property prediction, retrosynthesis prediction, and reaction prediction.
We conclude by identifying remaining challenges and discussing the future trend for deep learning methods in drug discovery.
arXiv Detail & Related papers (2023-03-01T08:16:38Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Self-Improved Retrosynthetic Planning [66.5397931294144]
Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule.
Recent search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs)
We propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties.
arXiv Detail & Related papers (2021-06-09T08:03:57Z) - Randomization-based Machine Learning in Renewable Energy Prediction
Problems: Critical Literature Review, New Results and Perspectives [6.771141943827748]
We review the most important characteristics of randomization-based machine learning approaches and their application to renewable energy prediction problems.
We support our critical analysis with an extensive experimental study, comprising real-world problems related to solar, wind and hydro-power energy.
arXiv Detail & Related papers (2021-03-26T17:38:46Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.