Learning Dynamic Graphs from All Contextual Information for Accurate
Point-of-Interest Visit Forecasting
- URL: http://arxiv.org/abs/2306.15927v2
- Date: Fri, 29 Sep 2023 02:02:28 GMT
- Title: Learning Dynamic Graphs from All Contextual Information for Accurate
Point-of-Interest Visit Forecasting
- Authors: Arash Hajisafi, Haowen Lin, Sina Shaham, Haoji Hu, Maria Despoina
Siampou, Yao-Yi Chiang, Cyrus Shahabi
- Abstract summary: Busyness Graph Neural Network (BysGNN) is a temporal graph neural network designed to learn and uncover the underlying multi-context correlations.
By incorporating all contextual, temporal, and spatial signals, we observe a significant improvement in our forecasting accuracy over state-of-the-art forecasting models.
- Score: 9.670949636600035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the number of visits to Points-of-Interest (POI) in an urban area
is critical for planning and decision-making for various application domains,
from urban planning and transportation management to public health and social
studies. Although this forecasting problem can be formulated as a multivariate
time-series forecasting task, the current approaches cannot fully exploit the
ever-changing multi-context correlations among POIs. Therefore, we propose
Busyness Graph Neural Network (BysGNN), a temporal graph neural network
designed to learn and uncover the underlying multi-context correlations between
POIs for accurate visit forecasting. Unlike other approaches where only
time-series data is used to learn a dynamic graph, BysGNN utilizes all
contextual information and time-series data to learn an accurate dynamic graph
representation. By incorporating all contextual, temporal, and spatial signals,
we observe a significant improvement in our forecasting accuracy over
state-of-the-art forecasting models in our experiments with real-world datasets
across the United States.
Related papers
- Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
We present the UrbanPT, which seamlessly integrates atemporal-temporal encoder with instruction-tuning paradigm.
We conduct extensive experiments on various public datasets, covering differenttemporal prediction tasks.
The results consistently demonstrate that our UrbanPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-25T12:37:29Z) - Adaptive Dependency Learning Graph Neural Networks [5.653058780958551]
We propose a hybrid approach combining neural networks and statistical structure learning models to self-learn dependencies.
We demonstrate significantly improved performance using our proposed approach on real-world benchmark datasets without a pre-defined dependency graph.
arXiv Detail & Related papers (2023-12-06T20:56:23Z) - SAMSGL: Series-Aligned Multi-Scale Graph Learning for Spatio-Temporal Forecasting [9.013416216828361]
We present a Series-Aligned Multi-Scale Graph Learning (SGL) framework, aiming to enhance forecasting performance.
In this work, we propose a series-aligned graph layer to facilitate the aggregation of non-delayed graph signals.
We conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.
arXiv Detail & Related papers (2023-12-05T10:37:54Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - A Context Integrated Relational Spatio-Temporal Model for Demand and
Supply Forecasting [22.010040988816137]
We propose a novel context integrated relational model, Context Integrated Graph Neural Network (CIGNN)
CIGNN leverages the temporal, relational, spatial, and dynamic contextual dependencies for multi-step ahead demand forecasting.
We show that CIGNN consistently outperforms state-of-the-art baselines in both periodic and irregular time-series networks.
arXiv Detail & Related papers (2020-09-25T22:55:36Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.