ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data
- URL: http://arxiv.org/abs/2412.10912v2
- Date: Tue, 17 Dec 2024 02:29:37 GMT
- Title: ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data
- Authors: Zhenyu Lei, Yushun Dong, Jundong Li, Chen Chen,
- Abstract summary: In real-world applications, most nodes may not possess any available temporal data during training.
We propose a principled framework named ST-FiT to handle this problem.
- Score: 59.78770412981611
- License:
- Abstract: Spatial-temporal graphs are widely used in a variety of real-world applications. Spatial-Temporal Graph Neural Networks (STGNNs) have emerged as a powerful tool to extract meaningful insights from this data. However, in real-world applications, most nodes may not possess any available temporal data during training. For example, the pandemic dynamics of most cities on a geographical graph may not be available due to the asynchronous nature of outbreaks. Such a phenomenon disagrees with the training requirements of most existing spatial-temporal forecasting methods, which jeopardizes their effectiveness and thus blocks broader deployment. In this paper, we propose to formulate a novel problem of inductive forecasting with limited training data. In particular, given a spatial-temporal graph, we aim to learn a spatial-temporal forecasting model that can be easily generalized onto those nodes without any available temporal training data. To handle this problem, we propose a principled framework named ST-FiT. ST-FiT consists of two key learning components: temporal data augmentation and spatial graph topology learning. With such a design, ST-FiT can be used on top of any existing STGNNs to achieve superior performance on the nodes without training data. Extensive experiments verify the effectiveness of ST-FiT in multiple key perspectives.
Related papers
- TCGPN: Temporal-Correlation Graph Pre-trained Network for Stock Forecasting [1.864621482724548]
We propose a novel approach called the Temporal-Correlation Graph Pre-trained Network (TCGPN) to address these limitations.
TCGPN utilize Temporal-correlation fusion encoder to get a mixed representation and pre-training method with carefully designed temporal and correlation pre-training tasks.
Experiments are conducted on real stock market data sets CSI300 and CSI500 that exhibit minimal periodicity.
arXiv Detail & Related papers (2024-07-26T05:27:26Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Graph Neural Processes for Spatio-Temporal Extrapolation [36.01312116818714]
We study the task of extrapolation-temporal processes that generates data at target locations from surrounding contexts in a graph.
Existing methods either use learning-grained models like Neural Networks or statistical approaches like Gaussian for this task.
We propose Spatio Graph Neural Processes (STGNP), a neural latent variable model which commands these capabilities simultaneously.
arXiv Detail & Related papers (2023-05-30T03:55:37Z) - Easy Begun is Half Done: Spatial-Temporal Graph Modeling with
ST-Curriculum Dropout [8.924689054841524]
We propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for spatial-temporal graph modeling.
We evaluate the learning difficulty of each node in high-level feature space and drop those difficult ones out to ensure the model only needs to handle fundamental ST relations.
Our strategy can be applied to any canonical deep learning architecture without extra trainable parameters.
arXiv Detail & Related papers (2022-11-28T09:47:46Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.