論文の概要: INSTA-BEEER: Explicit Error Estimation and Refinement for Fast and
Accurate Unseen Object Instance Segmentation
- arxiv url: http://arxiv.org/abs/2306.16132v1
- Date: Wed, 28 Jun 2023 12:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 14:27:42.413463
- Title: INSTA-BEEER: Explicit Error Estimation and Refinement for Fast and
Accurate Unseen Object Instance Segmentation
- Title(参考訳): INSTA-BEEER: 高速かつ高精度なオブジェクトインスタンスセグメンテーションのための明示的なエラー推定とリファインメント
- Authors: Seunghyeok Back, Sangbeom Lee, Kangmin Kim, Joosoon Lee, Sungho Shin,
Jaemo Maeng, Kyoobin Lee
- Abstract要約: InSTAnce Explicit Error Estimation and Refinement (INSTA-BEEER) を改良モデルとして提案する。
提案モデルによりセグメント化が大幅に向上し,最先端の性能が向上する。
高速なランタイム(0.1秒未満)で、モデルは様々な初期セグメンテーションメソッドのパフォーマンスを継続的に改善する。
- 参考スコア(独自算出の注目度): 6.281300149801041
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient and accurate segmentation of unseen objects is crucial for robotic
manipulation. However, it remains challenging due to over- or
under-segmentation. Although existing refinement methods can enhance the
segmentation quality, they fix only minor boundary errors or are not
sufficiently fast. In this work, we propose INSTAnce Boundary Explicit Error
Estimation and Refinement (INSTA-BEEER), a novel refinement model that allows
for adding and deleting instances and sharpening boundaries. Leveraging an
error-estimation-then-refinement scheme, the model first estimates the
pixel-wise boundary explicit errors: true positive, true negative, false
positive, and false negative pixels of the instance boundary in the initial
segmentation. It then refines the initial segmentation using these error
estimates as guidance. Experiments show that the proposed model significantly
enhances segmentation, achieving state-of-the-art performance. Furthermore,
with a fast runtime (less than 0.1 s), the model consistently improves
performance across various initial segmentation methods, making it highly
suitable for practical robotic applications.
- Abstract(参考訳): ロボット操作には、見えない物体の効率的かつ正確なセグメンテーションが不可欠である。
しかし、過度あるいは過度なセグメンテーションのため、依然として困難である。
既存の改良法はセグメンテーション品質を向上させることができるが、小さな境界エラーのみを修正できるか、十分に高速ではない。
本研究では,インスタンスの追加と削除,および境界のシャープ化を可能にする改良モデルであるINSTA-BEEER(INSTAnce boundary Explicit Error Estimation and Refinement)を提案する。
このモデルは、エラー推定-then-refinementスキームを利用して、最初に、最初のセグメンテーションでインスタンス境界の真正、真負、偽正、偽負のピクセルのピクセル境界の明示的なエラーを推定する。
その後、これらの誤差推定をガイダンスとして、初期セグメンテーションを洗練する。
実験により,提案モデルによりセグメント化が著しく向上し,最先端性能が達成された。
さらに、高速ランタイム(0.1秒未満)で、モデルは様々な初期セグメンテーションメソッドのパフォーマンスを一貫して改善し、実用的なロボットアプリケーションに適している。
関連論文リスト
- Embodied Uncertainty-Aware Object Segmentation [38.52448300879023]
本研究では,不確実性を考慮したオブジェクトインスタンスセグメンテーション(UncOS)を導入し,対話型セグメンテーションの有用性を示す。
本研究では,大容量事前学習モデルの複数問合せを行うことにより,信頼度推定とともに,領域分割仮説の集合を得る。
アウトプットは、ロボットアクションを選択し、シーンを混乱させ、あいまいさを減らす、信念駆動のプロセスへの入力としても機能する。
論文 参考訳(メタデータ) (2024-08-08T21:29:22Z) - RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant
Features [6.358423536732677]
本稿では,ロボットインタラクションとデザインされたボディーフレーム不変機能を用いて,不正確なセグメンテーションを補正する新しい手法を提案する。
オブジェクト分割精度を平均80.7%とすることで、散らばったシーンを正確にセグメント化するための対話型知覚パイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-04T05:03:24Z) - For A More Comprehensive Evaluation of 6DoF Object Pose Tracking [22.696375341994035]
上記の問題に対処するために、統一されたベンチマークに貢献する。
YCBVのより正確なアノテーションとして,多視点多目的グローバルポーズ改善法を提案する。
実験では,リアルな半合成データセットを用いて,提案手法の精度と信頼性を検証した。
論文 参考訳(メタデータ) (2023-09-14T15:35:08Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Self-Supervised Interactive Object Segmentation Through a
Singulation-and-Grasping Approach [9.029861710944704]
本稿では,新しいオブジェクトと対話し,各オブジェクトのトレーニングラベルを収集するロボット学習手法を提案する。
Singulation-and-Grasping(SaG)ポリシは、エンドツーエンドの強化学習を通じてトレーニングされる。
本システムは,シミュレートされた散文シーンにおいて,70%の歌唱成功率を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:01:36Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
ディープニューラルネットワーク(DNN)は通常、閉集合のセマンティッククラスで訓練される。
未発見のオブジェクトを扱うには不備だ。
このような物体の検出と局在化は、自動運転の認識などの安全クリティカルなアプリケーションに不可欠です。
論文 参考訳(メタデータ) (2021-04-30T07:58:19Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Exposing Semantic Segmentation Failures via Maximum Discrepancy
Competition [102.75463782627791]
オープンビジュアルの世界において,既存の意味セグメンテーション手法の失敗を露呈することで,質問に答える。
モデル改ざんに関するこれまでの研究に触発され、任意に大きい画像セットから始まり、2つのセグメンテーション方法間の差分法(MAD)をMAximizingすることによって、小さな画像セットを自動的にサンプリングします。
選択された画像は、2つの方法のいずれか(または両方)を偽造する最大の可能性を持っている。
また,MADコンペティションにおいて,障害の露呈が困難であるセグメンテーション法について検討した。
論文 参考訳(メタデータ) (2021-02-27T16:06:25Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
希少なクラスにおける既存検出器の最後の層のみを微調整することは、数発の物体検出タスクに不可欠である。
このような単純なアプローチは、現在のベンチマークで約220ポイントのメタ学習方法より優れている。
論文 参考訳(メタデータ) (2020-03-16T00:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。