Effective Transfer of Pretrained Large Visual Model for Fabric Defect
Segmentation via Specifc Knowledge Injection
- URL: http://arxiv.org/abs/2306.16186v1
- Date: Wed, 28 Jun 2023 13:08:08 GMT
- Title: Effective Transfer of Pretrained Large Visual Model for Fabric Defect
Segmentation via Specifc Knowledge Injection
- Authors: Zhewei Chen, Wai Keung Wong, Zuofeng Zhong, Jinpiao Liao, Ying Qu
- Abstract summary: This study introduces an innovative method to infuse specialized knowledge of fabric defects into the Segment Anything Model (SAM)
By introducing and training a unique set of fabric defect-related parameters, this approach seamlessly integrates domain-specific knowledge into SAM.
The experimental results reveal a significant improvement in the model's segmentation performance, attributable to this novel amalgamation of generic and fabric-specific knowledge.
- Score: 15.171188183349395
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fabric defect segmentation is integral to textile quality control. Despite
this, the scarcity of high-quality annotated data and the diversity of fabric
defects present significant challenges to the application of deep learning in
this field. These factors limit the generalization and segmentation performance
of existing models, impeding their ability to handle the complexity of diverse
fabric types and defects. To overcome these obstacles, this study introduces an
innovative method to infuse specialized knowledge of fabric defects into the
Segment Anything Model (SAM), a large-scale visual model. By introducing and
training a unique set of fabric defect-related parameters, this approach
seamlessly integrates domain-specific knowledge into SAM without the need for
extensive modifications to the pre-existing model parameters. The revamped SAM
model leverages generalized image understanding learned from large-scale
natural image datasets while incorporating fabric defect-specific knowledge,
ensuring its proficiency in fabric defect segmentation tasks. The experimental
results reveal a significant improvement in the model's segmentation
performance, attributable to this novel amalgamation of generic and
fabric-specific knowledge. When benchmarking against popular existing
segmentation models across three datasets, our proposed model demonstrates a
substantial leap in performance. Its impressive results in cross-dataset
comparisons and few-shot learning experiments further demonstrate its potential
for practical applications in textile quality control.
Related papers
- ConsistentFeature: A Plug-and-Play Component for Neural Network Regularization [0.32885740436059047]
Over- parameterized neural network models often lead to significant performance discrepancies between training and test sets.
We introduce a simple perspective on overfitting: models learn different representations in different i.i.d. datasets.
We propose an adaptive method, ConsistentFeature, that regularizes the model by constraining feature differences across random subsets of the same training set.
arXiv Detail & Related papers (2024-12-02T13:21:31Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
We investigate the effect of modelling choices on the feature learning characteristics of graph neural networks applied to a brain shape classification task.
We find substantial differences in the feature embeddings at different layers of the models.
arXiv Detail & Related papers (2024-05-02T13:26:18Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing [0.043512163406552]
This study introduces a novel method called "The Fairness Stitch" to enhance fairness in deep learning models.
We conduct a comprehensive evaluation of two well-known datasets, CelebA and UTKFace.
Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance.
arXiv Detail & Related papers (2023-11-06T21:14:37Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
We focus on investigating the benefits of data augmentation by analyzing pre-existing image datasets.
Our results show that the performance and robustness of existing state of the art (or SOTA) models can be increased dramatically.
arXiv Detail & Related papers (2022-08-06T03:39:37Z) - Generative Partial Visual-Tactile Fused Object Clustering [81.17645983141773]
We propose a Generative Partial Visual-Tactile Fused (i.e., GPVTF) framework for object clustering.
A conditional cross-modal clustering generative adversarial network is then developed to synthesize one modality conditioning on the other modality.
To the end, two pseudo-label based KL-divergence losses are employed to update the corresponding modality-specific encoders.
arXiv Detail & Related papers (2020-12-28T02:37:03Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.