The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing
- URL: http://arxiv.org/abs/2311.03532v1
- Date: Mon, 6 Nov 2023 21:14:37 GMT
- Title: The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing
- Authors: Modar Sulaiman and Kallol Roy
- Abstract summary: This study introduces a novel method called "The Fairness Stitch" to enhance fairness in deep learning models.
We conduct a comprehensive evaluation of two well-known datasets, CelebA and UTKFace.
Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance.
- Score: 0.043512163406552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pursuit of fairness in machine learning models has emerged as a critical
research challenge in different applications ranging from bank loan approval to
face detection. Despite the widespread adoption of artificial intelligence
algorithms across various domains, concerns persist regarding the presence of
biases and discrimination within these models. To address this pressing issue,
this study introduces a novel method called "The Fairness Stitch (TFS)" to
enhance fairness in deep learning models. This method combines model stitching
and training jointly, while incorporating fairness constraints. In this
research, we assess the effectiveness of our proposed method by conducting a
comprehensive evaluation of two well-known datasets, CelebA and UTKFace. We
systematically compare the performance of our approach with the existing
baseline method. Our findings reveal a notable improvement in achieving a
balanced trade-off between fairness and performance, highlighting the promising
potential of our method to address bias-related challenges and foster equitable
outcomes in machine learning models. This paper poses a challenge to the
conventional wisdom of the effectiveness of the last layer in deep learning
models for de-biasing.
Related papers
- FAIREDU: A Multiple Regression-Based Method for Enhancing Fairness in Machine Learning Models for Educational Applications [1.24497353837144]
This paper introduces FAIREDU, a novel and effective method designed to improve fairness across multiple sensitive features.
Through extensive experiments, we evaluate FAIREDU effectiveness in enhancing fairness without compromising model performance.
The results demonstrate that FAIREDU addresses intersectionality across features such as gender, race, age, and other sensitive features, outperforming state-of-the-art methods with minimal effect on model accuracy.
arXiv Detail & Related papers (2024-10-08T23:29:24Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
This study introduces an approach to mitigate bias in machine learning by leveraging model uncertainty.
Our approach utilizes a multi-task learning (MTL) framework combined with Monte Carlo (MC) Dropout to assess and mitigate uncertainty in predictions related to protected labels.
arXiv Detail & Related papers (2024-04-12T04:17:50Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - Improving Sample Efficiency of Deep Learning Models in Electricity
Market [0.41998444721319217]
We propose a general framework, namely Knowledge-Augmented Training (KAT), to improve the sample efficiency.
We propose a novel data augmentation technique to generate some synthetic data, which are later processed by an improved training strategy.
Modern learning theories demonstrate the effectiveness of our method in terms of effective prediction error feedbacks, a reliable loss function, and rich gradient noises.
arXiv Detail & Related papers (2022-10-11T16:35:13Z) - Learnability of Competitive Threshold Models [11.005966612053262]
We study the learnability of the competitive threshold model from a theoretical perspective.
We demonstrate how competitive threshold models can be seamlessly simulated by artificial neural networks.
arXiv Detail & Related papers (2022-05-08T01:11:51Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Modeling Techniques for Machine Learning Fairness: A Survey [17.925809181329015]
In recent years, various techniques have been developed to mitigate the bias for machine learning models.
In this survey, we review the current progress of in-processing bias mitigation techniques.
arXiv Detail & Related papers (2021-11-04T17:17:26Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.