Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation
- URL: http://arxiv.org/abs/2306.16195v1
- Date: Wed, 28 Jun 2023 13:21:00 GMT
- Title: Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation
- Authors: Chen Tang, Hongbo Zhang, Tyler Loakman, Chenghua Lin and Frank Guerin
- Abstract summary: In conventional graph neural networks (GNNs) message passing on a graph is independent from text.
This training regime leads to a semantic gap between graph knowledge and text.
We propose a novel framework for knowledge graph enhanced dialogue generation.
- Score: 23.54754465832362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating external graph knowledge into neural chatbot models has been
proven effective for enhancing dialogue generation. However, in conventional
graph neural networks (GNNs), message passing on a graph is independent from
text, resulting in the graph representation hidden space differing from that of
the text. This training regime of existing models therefore leads to a semantic
gap between graph knowledge and text. In this study, we propose a novel
framework for knowledge graph enhanced dialogue generation. We dynamically
construct a multi-hop knowledge graph with pseudo nodes to involve the language
model in feature aggregation within the graph at all steps. To avoid the
semantic biases caused by learning on vanilla subgraphs, the proposed framework
applies hierarchical graph attention to aggregate graph features on pseudo
nodes and then attains a global feature. Therefore, the framework can better
utilise the heterogeneous features from both the post and external graph
knowledge. Extensive experiments demonstrate that our framework outperforms
state-of-the-art (SOTA) baselines on dialogue generation. Further analysis also
shows that our representation learning framework can fill the semantic gap by
coagulating representations of both text and graph knowledge. Moreover, the
language model also learns how to better select knowledge triples for a more
informative response via exploiting subgraph patterns within our feature
aggregation process. Our code and resources are available at
https://github.com/tangg555/SaBART.
Related papers
- GAugLLM: Improving Graph Contrastive Learning for Text-Attributed Graphs with Large Language Models [33.3678293782131]
This work studies self-supervised graph learning for text-attributed graphs (TAGs)
We aim to improve view generation through language supervision.
This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information.
arXiv Detail & Related papers (2024-06-17T17:49:19Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Hi-ArG: Exploring the Integration of Hierarchical Argumentation Graphs
in Language Pretraining [62.069374456021016]
We propose the Hierarchical Argumentation Graph (Hi-ArG), a new structure to organize arguments.
We also introduce two approaches to exploit Hi-ArG, including a text-graph multi-modal model GreaseArG and a new pre-training framework augmented with graph information.
arXiv Detail & Related papers (2023-12-01T19:03:38Z) - GRENADE: Graph-Centric Language Model for Self-Supervised Representation
Learning on Text-Attributed Graphs [22.282756544376493]
We develop a novel Graph-Centric Language model, GRENADE, to solve the problem of self-supervised representation learning on text-attributed graphs.
GRENADE exploits the synergistic effect of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms.
The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs.
arXiv Detail & Related papers (2023-10-23T17:18:35Z) - Controlling Topic-Focus Articulation in Meaning-to-Text Generation using
Graph Neural Networks [8.334427140256606]
We try three different methods for topic-focus articulation (TFA) employing graph neural models for a meaning-to-text generation task.
We propose a novel encoding strategy about node aggregation in graph neural models, which instead of traditional encoding by aggregating adjacent node information, learns node representations by using depth-first search.
arXiv Detail & Related papers (2023-10-03T13:51:01Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.