論文の概要: Multi-IMU with Online Self-Consistency for Freehand 3D Ultrasound
Reconstruction
- arxiv url: http://arxiv.org/abs/2306.16197v2
- Date: Thu, 29 Jun 2023 12:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 10:12:36.147064
- Title: Multi-IMU with Online Self-Consistency for Freehand 3D Ultrasound
Reconstruction
- Title(参考訳): 自由度3次元超音波再構成のためのオンライン自己整合型マルチIMU
- Authors: Mingyuan Luo, Xin Yang, Zhongnuo Yan, Yuanji Zhang, Junyu Li,
Jiongquan Chen, Xindi Hu, Jikuan Qian, Jun Cheng, Dong Ni
- Abstract要約: Freehand 3D USは、複雑さを増すことなくスキャンされた領域をより深く理解する技術である。
標高の変位と累積誤差の推定は依然として困難である。
複数慣性測定ユニット(IMU)を用いた新しいオンライン自己整合ネットワーク(OSCNet)を提案する。
- 参考スコア(独自算出の注目度): 12.097414194618134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound (US) imaging is a popular tool in clinical diagnosis, offering
safety, repeatability, and real-time capabilities. Freehand 3D US is a
technique that provides a deeper understanding of scanned regions without
increasing complexity. However, estimating elevation displacement and
accumulation error remains challenging, making it difficult to infer the
relative position using images alone. The addition of external lightweight
sensors has been proposed to enhance reconstruction performance without adding
complexity, which has been shown to be beneficial. We propose a novel online
self-consistency network (OSCNet) using multiple inertial measurement units
(IMUs) to improve reconstruction performance. OSCNet utilizes a modal-level
self-supervised strategy to fuse multiple IMU information and reduce
differences between reconstruction results obtained from each IMU data.
Additionally, a sequence-level self-consistency strategy is proposed to improve
the hierarchical consistency of prediction results among the scanning sequence
and its sub-sequences. Experiments on large-scale arm and carotid datasets with
multiple scanning tactics demonstrate that our OSCNet outperforms previous
methods, achieving state-of-the-art reconstruction performance.
- Abstract(参考訳): 超音波(US)イメージングは臨床診断において一般的なツールであり、安全性、再現性、リアルタイム能力を提供する。
Freehand 3D USは、複雑さを増すことなくスキャンされた領域をより深く理解する技術である。
しかし,標高変位と累積誤差の推定は依然として困難であり,画像のみを用いて相対位置を推定することは困難である。
複雑さを増すことなく再建性能を向上させるために,外部軽量センサの追加が提案されている。
本稿では,複数慣性測定ユニット (imus) を用いた新しいオンライン自己抵抗ネットワーク (oscnet) を提案する。
OSCNetは、複数のIMU情報を融合し、各IMUデータから得られた再構成結果の違いを減らすために、モーダルレベルの自己管理戦略を利用する。
さらに,スキャンシーケンスとそのサブシーケンス間の予測結果の階層的一貫性を改善するために,シーケンスレベルの自己一貫性戦略を提案する。
複数のスキャン戦術を用いた大規模腕と頸動脈データセットの実験では,oscnetが従来の手法を上回っており,最先端の再構築性能を実現している。
関連論文リスト
- MCU-Net: A Multi-prior Collaborative Deep Unfolding Network with Gates-controlled Spatial Attention for Accelerated MR Image Reconstruction [9.441882492801174]
ディープ・アンフォールディング・ネットワーク(DUN)はMRI(accrating magnetic resonance imaging)において有意な可能性を証明している
しかし、それらはしばしば高い計算コストと緩やかな収束率に遭遇する。
我々はこれらの制約に対処するため、MCU-Netと呼ばれるマルチプライオリティ協調型DUNを提案する。
論文 参考訳(メタデータ) (2024-02-04T07:29:00Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
アンダーサンプリングにおけるスパーシリティレベルやパターンに制約されることなく、再構成品質を向上させる、教師なし適応型粗大化フレームワークを提案する。
我々は,獲得したk空間信号の自己超越的利用を段階的に洗練する,新しい学習戦略を統合する。
提案手法は,8倍のアンダーサンプリングを行うため,現在最先端のスキャン特異的MRI再構成技術より優れている。
論文 参考訳(メタデータ) (2023-12-01T16:00:16Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
Zero-Shot Learned Adrial Transformers (SLATER) を用いた新しい非監視MRI再構成法を提案する。
アンダーサンプルテストデータ上でゼロショット再構成を行い、ネットワークパラメータを最適化して推論を行います。
脳MRIデータセットの実験は、いくつかの最先端の教師なし手法に対してSLATERの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2021-05-15T02:01:21Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
一つのビデオから多視点深度を推定する新しい手法を提案する。
提案手法は,新しいEpipolar Spatio-Temporal Transformer(EST)を用いて時間的コヒーレントな深度推定を行う。
最近のMixture-of-Expertsモデルにインスパイアされた計算コストを削減するため、我々はコンパクトなハイブリッドネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-26T04:04:21Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。