論文の概要: Towards a Better Understanding of Learning with Multiagent Teams
- arxiv url: http://arxiv.org/abs/2306.16205v1
- Date: Wed, 28 Jun 2023 13:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 14:07:45.564888
- Title: Towards a Better Understanding of Learning with Multiagent Teams
- Title(参考訳): マルチエージェントチームによる学習の理解を深める
- Authors: David Radke, Kate Larson, Tim Brecht and Kyle Tilbury
- Abstract要約: いくつかのチーム構造は、エージェントが特定の役割を専門化することを学ぶのに役立つことを示しています。
大規模なチームは、コーディネーションを減らすためのクレジット割り当ての課題を作成します。
- 参考スコア(独自算出の注目度): 4.746424588605832
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: While it has long been recognized that a team of individual learning agents
can be greater than the sum of its parts, recent work has shown that larger
teams are not necessarily more effective than smaller ones. In this paper, we
study why and under which conditions certain team structures promote effective
learning for a population of individual learning agents. We show that,
depending on the environment, some team structures help agents learn to
specialize into specific roles, resulting in more favorable global results.
However, large teams create credit assignment challenges that reduce
coordination, leading to large teams performing poorly compared to smaller
ones. We support our conclusions with both theoretical analysis and empirical
results.
- Abstract(参考訳): 個人学習エージェントのチームは、その部分の合計よりも大きいと長年認識されてきたが、最近の研究によると、より大きなチームは必ずしも小さなものよりも効果的ではない。
本稿では,特定のチーム構造が個人学習エージェントの集団に対して効果的な学習を促進する理由と条件について検討する。
環境によっては、エージェントが特定の役割を専門化するのに役立ついくつかのチーム構造が、より望ましいグローバルな結果をもたらすことを示している。
しかし、大きなチームはコーディネーションを減らすためのクレジット割り当ての課題を作り、大きなチームは小さなチームに比べてパフォーマンスが悪くなります。
理論的分析と経験的結果の両方で結論を支持する。
関連論文リスト
- Learning to Learn Group Alignment: A Self-Tuning Credo Framework with
Multiagent Teams [1.370633147306388]
マルチエージェントチームを持つ人口の混合インセンティブは、完全に協調したシステムよりも有利であることが示されている。
個人学習エージェントが報酬関数の様々な部分を通してインセンティブの構成を自己制御する枠組みを提案する。
論文 参考訳(メタデータ) (2023-04-14T18:16:19Z) - Informational Diversity and Affinity Bias in Team Growth Dynamics [6.729250803621849]
情報多様性の利点は親和性バイアスと緊張関係にあることを示す。
本結果は,情報多様性を促進するためのユーティリティベースのモチベーションの基本的な制限を定式化した。
論文 参考訳(メタデータ) (2023-01-28T05:02:40Z) - Learning to Transfer Role Assignment Across Team Sizes [48.43860606706273]
チーム規模で役割の割り当てと移譲を学ぶためのフレームワークを提案する。
ロールベースの信用割当構造を再利用することで、より大きな強化学習チームの学習プロセスが促進されることを示す。
論文 参考訳(メタデータ) (2022-04-17T11:22:01Z) - Flat Teams Drive Scientific Innovation [43.65818554474622]
個人の活動が、研究の方向性とプレゼンテーションを通じて、リーダーシップの幅広い役割にどのように結びついているかを示す。
科学チームの隠された階層は、そのリード(またはL)比がチーム規模全体に対してリーダーシップの役割を担っているのが特徴です。
フラットで平等なチームと対照的に、背が高く階層的なチームは、より斬新さを減らし、より多く既存のアイデアを発達させます。
論文 参考訳(メタデータ) (2022-01-18T04:07:49Z) - Team Power and Hierarchy: Understanding Team Success [11.09080707714613]
本研究は,コンピュータ科学分野におけるチームパワーとチームの成功との関係を深く検討する。
4,106,995のCSチームを分析することで、フラットな構造を持つハイパワーチームが最高のパフォーマンスを持つことがわかりました。
逆に、階層構造を持つ低パワーチームは、チームのパフォーマンスのファシリテータです。
論文 参考訳(メタデータ) (2021-08-09T15:10:58Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
現実世界のマルチエージェントシステムでは、異なる能力を持つエージェントがチーム全体の目標を変更することなく参加または離脱する可能性がある。
この問題に取り組むコーチ・プレイヤー・フレームワーク「COPA」を提案します。
1)コーチと選手の両方の注意メカニズムを採用し、2)学習を正規化するための変動目標を提案し、3)コーチが選手とのコミュニケーションのタイミングを決定するための適応的なコミュニケーション方法を設計する。
論文 参考訳(メタデータ) (2021-05-18T17:27:37Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
本稿では,競争力のあるマルチプレイヤーカードゲームの現実的な実装を学習・プレイするために,一般的な強化学習アルゴリズムをどのように適用できるかについて検討する。
本研究は,学習エージェントに対して,エージェントが競争力を持つことの学習方法を評価するための特定のトレーニングと検証ルーチンを提案し,それらが相互の演奏スタイルにどのように適応するかを説明する。
論文 参考訳(メタデータ) (2020-04-08T14:11:05Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
外部のエージェントチームによるパフォーマンスの競争が社会的影響として作用するかどうかを検討する。
以上の結果から,外部競争の影響により精度と一般化が向上し,コミュニケーション言語が急速に出現することが示唆された。
論文 参考訳(メタデータ) (2020-03-04T01:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。