DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy
- URL: http://arxiv.org/abs/2306.16324v2
- Date: Thu, 28 Mar 2024 12:05:23 GMT
- Title: DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy
- Authors: Yiwen Zhang, Chuanpu Li, Liming Zhong, Zeli Chen, Wei Yang, Xuetao Wang,
- Abstract summary: We propose a distance-aware diffusion model (DoseDiff) for precise prediction of dose distribution.
The results demonstrate that our DoseDiff method outperforms state-of-the-art dose prediction methods in terms of both quantitative performance and visual quality.
- Score: 7.934475806787889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Treatment planning, which is a critical component of the radiotherapy workflow, is typically carried out by a medical physicist in a time-consuming trial-and-error manner. Previous studies have proposed knowledge-based or deep-learning-based methods for predicting dose distribution maps to assist medical physicists in improving the efficiency of treatment planning. However, these dose prediction methods usually fail to effectively utilize distance information between surrounding tissues and targets or organs-at-risk (OARs). Moreover, they are poor at maintaining the distribution characteristics of ray paths in the predicted dose distribution maps, resulting in a loss of valuable information. In this paper, we propose a distance-aware diffusion model (DoseDiff) for precise prediction of dose distribution. We define dose prediction as a sequence of denoising steps, wherein the predicted dose distribution map is generated with the conditions of the computed tomography (CT) image and signed distance maps (SDMs). The SDMs are obtained by distance transformation from the masks of targets or OARs, which provide the distance from each pixel in the image to the outline of the targets or OARs. We further propose a multi-encoder and multi-scale fusion network (MMFNet) that incorporates multi-scale and transformer-based fusion modules to enhance information fusion between the CT image and SDMs at the feature level. We evaluate our model on two in-house datasets and a public dataset, respectively. The results demonstrate that our DoseDiff method outperforms state-of-the-art dose prediction methods in terms of both quantitative performance and visual quality.
Related papers
- MD-Dose: A Diffusion Model based on the Mamba for Radiotherapy Dose
Prediction [14.18016609082685]
We introduce a novel diffusion model, MD-Dose, for predicting radiation therapy dose distribution in thoracic cancer patients.
In the forward process, MD-Dose adds Gaussian noise to dose distribution maps to obtain pure noise images.
In the backward process, MD-Dose utilizes a noise predictor based on the Mamba to predict the noise, ultimately outputting the dose distribution maps.
arXiv Detail & Related papers (2024-03-13T12:46:36Z) - SP-DiffDose: A Conditional Diffusion Model for Radiation Dose Prediction
Based on Multi-Scale Fusion of Anatomical Structures, Guided by
SwinTransformer and Projector [14.18016609082685]
We propose a dose prediction diffusion model based on SwinTransformer and a projector, SP-DiffDose.
To capture the direct correlation between anatomical structure and dose distribution maps, SP-DiffDose uses a structural encoder to extract features from anatomical images.
To enhance the dose prediction distribution for organs at risk, SP-DiffDose utilizes SwinTransformer in the deeper layers of the network to capture features at different scales in the image.
arXiv Detail & Related papers (2023-12-11T08:07:41Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - DiffDP: Radiotherapy Dose Prediction via a Diffusion Model [13.44191425264393]
We introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients.
In the forward process, DiffDP gradually transforms dose maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep.
In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map.
arXiv Detail & Related papers (2023-07-19T07:25:33Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
arXiv Detail & Related papers (2023-06-05T14:06:40Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Diffusion Earth Mover's Distance and Distribution Embeddings [61.49248071384122]
Diffusion can be computed in $tildeO(n)$ time and is more accurate than similarly fast algorithms such as tree-baseds.
We show Diffusion is fully differentiable, making it amenable to future uses in gradient-descent frameworks such as deep neural networks.
arXiv Detail & Related papers (2021-02-25T13:18:32Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.