Bending the Automation Bias Curve: A Study of Human and AI-based
Decision Making in National Security Contexts
- URL: http://arxiv.org/abs/2306.16507v1
- Date: Wed, 28 Jun 2023 18:57:36 GMT
- Title: Bending the Automation Bias Curve: A Study of Human and AI-based
Decision Making in National Security Contexts
- Authors: Michael C. Horowitz, Lauren Kahn
- Abstract summary: We theorize about the relationship between background knowledge about AI, trust in AI, and how these interact with other factors to influence the probability of automation bias.
We test these in a preregistered task identification experiment across a representative sample of 9000 adults in 9 countries with varying levels of AI industries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uses of artificial intelligence (AI), especially those powered by machine
learning approaches, are growing in sectors and societies around the world. How
will AI adoption proceed, especially in the international security realm?
Research on automation bias suggests that humans can often be overconfident in
AI, whereas research on algorithm aversion shows that, as the stakes of a
decision rise, humans become more cautious about trusting algorithms. We
theorize about the relationship between background knowledge about AI, trust in
AI, and how these interact with other factors to influence the probability of
automation bias in the international security context. We test these in a
preregistered task identification experiment across a representative sample of
9000 adults in 9 countries with varying levels of AI industries. The results
strongly support the theory, especially concerning AI background knowledge. A
version of the Dunning Kruger effect appears to be at play, whereby those with
the lowest level of experience with AI are slightly more likely to be
algorithm-averse, then automation bias occurs at lower levels of knowledge
before leveling off as a respondent's AI background reaches the highest levels.
Additional results show effects from the task's difficulty, overall AI trust,
and whether a human or AI decision aid is described as highly competent or less
competent.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted.
To help people appropriately rely on AI aids, we propose showing them behavior descriptions.
arXiv Detail & Related papers (2023-01-06T00:33:08Z) - On the Influence of Explainable AI on Automation Bias [0.0]
We aim to shed light on the potential to influence automation bias by explainable AI (XAI)
We conduct an online experiment with regard to hotel review classifications and discuss first results.
arXiv Detail & Related papers (2022-04-19T12:54:23Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.