Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall
Classification
- URL: http://arxiv.org/abs/2306.16760v1
- Date: Thu, 29 Jun 2023 07:56:27 GMT
- Title: Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall
Classification
- Authors: Anthony Miyaguchi, Nathan Zhong, Murilo Gustineli, and Chris Hayduk
- Abstract summary: We present working notes on transfer learning with semi-supervised dataset annotation for the BirdCLEF 2023 competition.
Our approach utilizes existing off-the-shelf models, BirdNET and MixIT, to address representation and labeling challenges in the competition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present working notes on transfer learning with semi-supervised dataset
annotation for the BirdCLEF 2023 competition, focused on identifying African
bird species in recorded soundscapes. Our approach utilizes existing
off-the-shelf models, BirdNET and MixIT, to address representation and labeling
challenges in the competition. We explore the embedding space learned by
BirdNET and propose a process to derive an annotated dataset for supervised
learning. Our experiments involve various models and feature engineering
approaches to maximize performance on the competition leaderboard. The results
demonstrate the effectiveness of our approach in classifying bird species and
highlight the potential of transfer learning and semi-supervised dataset
annotation in similar tasks.
Related papers
- Training Spatial-Frequency Visual Prompts and Probabilistic Clusters for Accurate Black-Box Transfer Learning [35.72926400167876]
This paper proposes a novel parameter-efficient transfer learning framework for vision recognition models in the black-box setting.
In experiments, our model demonstrates superior performance in a few-shot transfer learning setting across extensive visual recognition datasets.
arXiv Detail & Related papers (2024-08-15T05:35:52Z) - SmurfCat at SemEval-2024 Task 6: Leveraging Synthetic Data for Hallucination Detection [51.99159169107426]
We present our novel systems developed for the SemEval-2024 hallucination detection task.
Our investigation spans a range of strategies to compare model predictions with reference standards.
We introduce three distinct methods that exhibit strong performance metrics.
arXiv Detail & Related papers (2024-04-09T09:03:44Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
We propose a new active learning approach for efficiently estimating the geographic range of a species from a limited number of on the ground observations.
We show that it is possible to generate this candidate set of ranges by using models that have been trained on large weakly supervised community collected observation data.
We conduct a detailed evaluation of our approach and compare it to existing active learning methods using an evaluation dataset containing expert-derived ranges for one thousand species.
arXiv Detail & Related papers (2023-11-03T17:45:18Z) - BirdSAT: Cross-View Contrastive Masked Autoencoders for Bird Species
Classification and Mapping [22.30038765017189]
We propose a metadata-aware self-supervised learning(SSL) framework useful for fine-grained classification and ecological mapping of bird species around the world.
Our framework unifies two SSL strategies: Contrastive Learning(CL) and Masked Image Modeling(MIM), while also enriching the embedding space with metadata available with ground-level imagery of birds.
We demonstrate that our models learn fine-grained and geographically conditioned features of birds, by evaluating on two downstream tasks: fine-grained visual classification(FGVC) and cross-modal retrieval.
arXiv Detail & Related papers (2023-10-29T22:08:00Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - INoD: Injected Noise Discriminator for Self-Supervised Representation
Learning in Agricultural Fields [6.891600948991265]
We propose an Injected Noise Discriminator (INoD) which exploits principles of feature replacement and dataset discrimination for self-supervised representation learning.
INoD interleaves feature maps from two disjoint datasets during their convolutional encoding and predicts the dataset affiliation of the resultant feature map as a pretext task.
Our approach enables the network to learn unequivocal representations of objects seen in one dataset while observing them in conjunction with similar features from the disjoint dataset.
arXiv Detail & Related papers (2023-03-31T14:46:31Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - An empirical investigation into audio pipeline approaches for
classifying bird species [0.9158130615768508]
This paper is an investigation into aspects of an audio classification pipeline that will be appropriate for the monitoring of bird species on edges devices.
Two classification approaches will be taken into consideration, one which explores the effectiveness of a traditional Deep Neural Network(DNN) and another that makes use of Convolutional layers.
arXiv Detail & Related papers (2021-08-10T05:02:38Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
We propose a novel Task Adaptation Network (TAN) to solve this unsupervised task transfer problem.
In addition to learning transferable features via domain-adversarial training, we propose a novel task semantic adaptor that uses the learning-to-learn strategy to adapt the task semantics.
TAN significantly increases the recall and F1 score by 5.0% and 7.8% compared to recently strong baselines.
arXiv Detail & Related papers (2021-03-03T11:18:43Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.