論文の概要: NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes
- arxiv url: http://arxiv.org/abs/2306.16869v3
- Date: Thu, 12 Dec 2024 01:37:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:40.877406
- Title: NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes
- Title(参考訳): NeuralFuse:低電圧レジームにおけるアクセス制限型ニューラルネットワーク推論の精度回復のための学習
- Authors: Hao-Lun Sun, Lei Hsiung, Nandhini Chandramoorthy, Pin-Yu Chen, Tsung-Yi Ho,
- Abstract要約: ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は問題の多いままである。
我々は低電圧状態におけるエネルギー精度のトレードオフを処理する新しいアドオンモジュールであるNeuralFuseを開発した。
1%のビットエラー率で、NeuralFuseはアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
- 参考スコア(独自算出の注目度): 50.00272243518593
- License:
- Abstract: Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains problematically high. An effective strategy for reducing such consumption is supply-voltage reduction, but if done too aggressively, it can lead to accuracy degradation. This is due to random bit-flips in static random access memory (SRAM), where model parameters are stored. To address this challenge, we have developed NeuralFuse, a novel add-on module that handles the energy-accuracy tradeoff in low-voltage regimes by learning input transformations and using them to generate error-resistant data representations, thereby protecting DNN accuracy in both nominal and low-voltage scenarios. As well as being easy to implement, NeuralFuse can be readily applied to DNNs with limited access, such cloud-based APIs that are accessed remotely or non-configurable hardware. Our experimental results demonstrate that, at a 1% bit-error rate, NeuralFuse can reduce SRAM access energy by up to 24% while recovering accuracy by up to 57%. To the best of our knowledge, this is the first approach to addressing low-voltage-induced bit errors that requires no model retraining.
- Abstract(参考訳): ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は問題の多いままである。
このような消費を減らすための効果的な戦略は、供給電圧の低減であるが、過度に実行すれば精度の低下につながる可能性がある。
これは、モデルパラメータを格納する静的ランダムアクセスメモリ(SRAM)におけるランダムビットフリップに起因する。
この課題に対処するため、我々は、入力変換を学習し、それを用いてエラー耐性データ表現を生成することで、低電圧状態におけるエネルギー精度のトレードオフを処理する新しいアドオンモジュールであるNeuralFuseを開発した。
実装が容易であるだけでなく、NeuralFuseは、リモートまたは構成不可能なハードウェアにアクセス可能なクラウドベースのAPIのような制限されたアクセスを持つDNNにも容易に適用できる。
実験の結果、1%のビットエラー率で、NeuralFuseはSRAMアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができることがわかった。
我々の知る限りでは、これはモデルの再トレーニングを必要としない低電圧によるビットエラーに対処する最初のアプローチである。
関連論文リスト
- Instant Complexity Reduction in CNNs using Locality-Sensitive Hashing [50.79602839359522]
本稿では,パラメータフリーでデータフリーなモジュールであるHASTE(Hashing for Tractable Efficiency)を提案する。
局所性感応ハッシュ (LSH) を用いることで, 精度を犠牲にすることなく, 遅延特徴写像を劇的に圧縮することができる。
特に、HASTEモジュール用のCIFAR-10上のResNet34で畳み込みモジュールを切り替えるだけで、FLOPの46.72%を即座に落とすことができる。
論文 参考訳(メタデータ) (2023-09-29T13:09:40Z) - Improving Reliability of Spiking Neural Networks through Fault Aware
Threshold Voltage Optimization [0.0]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックなハードウェアに自らを貸すことで、コンピュータビジョンを突破した。
Systolic-array SNNアクセラレータ(systolicSNN)が最近提案されているが、信頼性は依然として大きな懸念点である。
本稿では、リトレーニングにおける新しい故障軽減手法、すなわち、故障認識しきい値電圧の最適化について述べる(FalVolt)。
論文 参考訳(メタデータ) (2023-01-12T19:30:21Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
本稿では,ニューラルネットワークの変動と雑音下での堅牢性を高める枠組みを提案する。
ニューラルネットワークの予測精度は、変動とノイズの下で1.69%以下から回復可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T19:13:33Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
DNN Accelerators [105.60654479548356]
固定点量子化と重み切り、およびランダムビット誤り訓練(RandBET)の組み合わせにより、量子化DNN重みにおけるランダムビット誤りや逆ビット誤りに対するロバスト性を著しく向上することを示す。
これは低電圧運転のための高省エネと低精度量子化をもたらすが、DNN加速器の安全性も向上する。
論文 参考訳(メタデータ) (2021-04-16T19:11:14Z) - Enabling Incremental Training with Forward Pass for Edge Devices [0.0]
進化戦略(ES)を用いてネットワークを部分的に再トレーニングし,エラー発生後に変更に適応し,回復できるようにする手法を提案する。
この技術は、バックプロパゲーションを必要とせず、最小限のリソースオーバーヘッドで推論専用ハードウェアのトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-03-25T17:43:04Z) - Dynamic Hard Pruning of Neural Networks at the Edge of the Internet [11.605253906375424]
動的ハードプルーニング(DynHP)技術は、トレーニング中にネットワークを段階的にプルーニングする。
DynHPは、最終ニューラルネットワークの調整可能なサイズ削減と、トレーニング中のNNメモリ占有率の削減を可能にする。
凍結メモリは、ハードプルーニング戦略による精度劣化を相殺するために、エンファンダイナミックバッチサイズアプローチによって再利用される。
論文 参考訳(メタデータ) (2020-11-17T10:23:28Z) - Bit Error Robustness for Energy-Efficient DNN Accelerators [93.58572811484022]
本稿では、ロバストな固定点量子化、重み切り、ランダムビット誤り訓練(RandBET)の組み合わせにより、ランダムビット誤りに対するロバスト性を向上することを示す。
これは低電圧動作と低精度量子化の両方から高エネルギーの節約につながる。
論文 参考訳(メタデータ) (2020-06-24T18:23:10Z) - Towards Explainable Bit Error Tolerance of Resistive RAM-Based Binarized
Neural Networks [7.349786872131006]
抵抗性RAM(RRAM)のような不揮発性メモリは、エネルギー効率が向上するストレージである。
バイナリニューラルネットワーク(BNN)は、精度を損なうことなく、ある種のエラーを許容することができる。
BNNのビットエラー耐性(BET)は、トレーニング中にウェイトサインを反転させることによって達成できる。
論文 参考訳(メタデータ) (2020-02-03T17:38:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。