論文の概要: Provable Advantage of Curriculum Learning on Parity Targets with Mixed
Inputs
- arxiv url: http://arxiv.org/abs/2306.16921v1
- Date: Thu, 29 Jun 2023 13:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 13:17:26.380082
- Title: Provable Advantage of Curriculum Learning on Parity Targets with Mixed
Inputs
- Title(参考訳): 混合入力を用いたパリティ目標に対するカリキュラム学習の有用性
- Authors: Emmanuel Abbe, Elisabetta Cornacchia, Aryo Lotfi
- Abstract要約: 共通サンプル分布における標準(有界)学習率のトレーニングステップ数の分離結果を示す。
また,理論結果の具体的構造を超えた定性的分離を支持する実験結果も提供する。
- 参考スコア(独自算出の注目度): 21.528321119061694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experimental results have shown that curriculum learning, i.e., presenting
simpler examples before more complex ones, can improve the efficiency of
learning. Some recent theoretical results also showed that changing the
sampling distribution can help neural networks learn parities, with formal
results only for large learning rates and one-step arguments. Here we show a
separation result in the number of training steps with standard (bounded)
learning rates on a common sample distribution: if the data distribution is a
mixture of sparse and dense inputs, there exists a regime in which a 2-layer
ReLU neural network trained by a curriculum noisy-GD (or SGD) algorithm that
uses sparse examples first, can learn parities of sufficiently large degree,
while any fully connected neural network of possibly larger width or depth
trained by noisy-GD on the unordered samples cannot learn without additional
steps. We also provide experimental results supporting the qualitative
separation beyond the specific regime of the theoretical results.
- Abstract(参考訳): 実験結果から, カリキュラム学習, すなわち, より複雑なものよりも簡単な例を提示することで, 学習効率が向上することが示唆された。
最近の理論的な結果は、サンプリング分布を変えることでニューラルネットワークがパリティを学習するのに役立つことも示している。
Here we show a separation result in the number of training steps with standard (bounded) learning rates on a common sample distribution: if the data distribution is a mixture of sparse and dense inputs, there exists a regime in which a 2-layer ReLU neural network trained by a curriculum noisy-GD (or SGD) algorithm that uses sparse examples first, can learn parities of sufficiently large degree, while any fully connected neural network of possibly larger width or depth trained by noisy-GD on the unordered samples cannot learn without additional steps.
また,理論結果の特定の構成を超えた質的分離を支援する実験結果を提供する。
関連論文リスト
- Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
ニューラルネットワークベースのアクティブラーニング(NAL)は、ニューラルネットワークを使用してサンプルの小さなサブセットを選択してトレーニングする、費用対効果の高いデータ選択技術である。
我々は、機能学習の観点から、両方のクエリ基準ベースのNALの成功について、統一的な説明を提供することにより、一歩前進させようとする。
論文 参考訳(メタデータ) (2024-06-06T10:38:01Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and
Luck [35.6883212537938]
オフラインスパースパリティ学習は,多層パーセプトロンの勾配に基づくトレーニングにおいて,統計的クエリの下限を許容する教師付き分類問題である。
理論上, 実験上, 疎初期化とネットワーク幅の増大がサンプル効率を著しく向上させることを示す。
また,合成スパースパリティタスクは,軸方向の特徴学習を必要とする現実的な問題のプロキシとして有用であることを示す。
論文 参考訳(メタデータ) (2023-09-07T15:52:48Z) - Computational Complexity of Learning Neural Networks: Smoothness and
Degeneracy [52.40331776572531]
ガウス入力分布下での学習深度3$ReLUネットワークはスムーズな解析フレームワークにおいても困難であることを示す。
この結果は, 局所擬似乱数発生器の存在についてよく研究されている。
論文 参考訳(メタデータ) (2023-02-15T02:00:26Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
本稿では,各ミニバッチからサンプル関係を学習可能なディープニューラルネットワークを提案する。
BatchFormerは各ミニバッチのバッチ次元に適用され、トレーニング中のサンプル関係を暗黙的に探索する。
我々は10以上のデータセットに対して広範な実験を行い、提案手法は異なるデータ不足アプリケーションにおいて大幅な改善を実現する。
論文 参考訳(メタデータ) (2022-03-03T05:31:33Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。