論文の概要: A Quantitative Functional Central Limit Theorem for Shallow Neural
Networks
- arxiv url: http://arxiv.org/abs/2306.16932v1
- Date: Thu, 29 Jun 2023 13:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 14:43:52.875019
- Title: A Quantitative Functional Central Limit Theorem for Shallow Neural
Networks
- Title(参考訳): 浅層ニューラルネットワークのための定量的機能中心極限理論
- Authors: Valentina Cammarota, Domenico Marinucci, Michele Salvi, Stefano
Vigogna
- Abstract要約: 一般化活性化関数を持つ一層ニューラルネットワークに対する定量的機能中心極限定理を証明した。
私たちが確立する収束の速度は、活性化関数の滑らかさに大きく依存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove a Quantitative Functional Central Limit Theorem for one-hidden-layer
neural networks with generic activation function. The rates of convergence that
we establish depend heavily on the smoothness of the activation function, and
they range from logarithmic in non-differentiable cases such as the Relu to
$\sqrt{n}$ for very regular activations. Our main tools are functional versions
of the Stein-Malliavin approach; in particular, we exploit heavily a
quantitative functional central limit theorem which has been recently
established by Bourguin and Campese (2020).
- Abstract(参考訳): 一般化活性化関数を持つ一層ニューラルネットワークに対する定量的機能中心極限定理を証明した。
私たちが確立する収束の速度は活性化関数の滑らかさに大きく依存しており、Relu のような微分不可能な場合の対数から非常に正規な活性化に対して $\sqrt{n}$ まで様々である。
特に、ブルジュインとカンペス(2020年)によって最近確立された定量的機能的中央極限定理を大いに活用している。
関連論文リスト
- Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Approximation of Nonlinear Functionals Using Deep ReLU Networks [7.876115370275732]
本稿では,ReLU(rerectified linear unit)アクティベーション関数に関連する機能深部ニューラルネットワークの近似能力について検討する。
さらに,弱規則性条件下での関数型深部ReLUネットワークの近似率を確立する。
論文 参考訳(メタデータ) (2023-04-10T08:10:11Z) - Function Approximation with Randomly Initialized Neural Networks for
Approximate Model Reference Adaptive Control [0.0]
近年の研究では、ReLUのような特殊活性化関数に対して、ランダムなアクティベーションの線形結合によって高い精度が得られることが示されている。
本稿では, 直接積分表現が知られていないアクティベーションを用いて, 対象関数の積分表現を形成する手段を提供する。
論文 参考訳(メタデータ) (2023-03-28T18:55:48Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Benefits of Overparameterized Convolutional Residual Networks: Function
Approximation under Smoothness Constraint [48.25573695787407]
大規模なConvResNetは関数の値から目的関数を近似できるだけでなく、一階スムーズ性も十分に発揮できることを示す。
我々の理論は、実際にディープ・ワイド・ネットワークを使うことの利点を部分的に正当化している。
論文 参考訳(メタデータ) (2022-06-09T15:35:22Z) - Deep neural network approximation of analytic functions [91.3755431537592]
ニューラルネットワークの空間に エントロピーバウンド 片方向の線形活性化関数を持つ
我々は、ペナル化深部ニューラルネットワーク推定器の予測誤差に対するオラクルの不等式を導出する。
論文 参考訳(メタデータ) (2021-04-05T18:02:04Z) - Non-asymptotic approximations of neural networks by Gaussian processes [7.56714041729893]
ランダムな重みを持つ場合、ガウス過程によって広いニューラルネットワークが近似される程度を研究する。
ネットワークの幅が無限大になるにつれて、その法則はガウス過程に収束する。
論文 参考訳(メタデータ) (2021-02-17T10:19:26Z) - The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality [0.0]
浅層および深層ニューラルネットワークの量に対する上限を証明します。
我々はさらに、これらの境界がコロボフ函数を近似するために必要となる連続関数近似器の最小パラメータ数にほぼ一致することを証明した。
論文 参考訳(メタデータ) (2020-12-10T04:44:07Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Interval Universal Approximation for Neural Networks [47.767793120249095]
区間普遍近似(IUA)定理を導入する。
IUAは、ニューラルネットワークが何十年にもわたって知られているような、あらゆる連続関数の$f$を近似できることを示している。
本稿では,精度の高い区間解析が可能なニューラルネットワークを構築する際の計算複雑性について検討する。
論文 参考訳(メタデータ) (2020-07-12T20:43:56Z) - On Sharpness of Error Bounds for Multivariate Neural Network
Approximation [0.0]
この論文は、このようなリッジ関数の和による最良の非線形近似を扱う。
誤差境界は滑らかさのモジュライで表される。
論文 参考訳(メタデータ) (2020-04-05T14:00:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。