Predicting Music Hierarchies with a Graph-Based Neural Decoder
- URL: http://arxiv.org/abs/2306.16955v1
- Date: Thu, 29 Jun 2023 13:59:18 GMT
- Title: Predicting Music Hierarchies with a Graph-Based Neural Decoder
- Authors: Francesco Foscarin, Daniel Harasim, Gerhard Widmer
- Abstract summary: This paper describes a data-driven framework to parse musical sequences into dependency trees.
dependency trees are hierarchical structures used in music cognition research and music analysis.
One major benefit of this system is that it can be easily integrated into modern deep-learning pipelines.
- Score: 6.617487928813374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a data-driven framework to parse musical sequences into
dependency trees, which are hierarchical structures used in music cognition
research and music analysis. The parsing involves two steps. First, the input
sequence is passed through a transformer encoder to enrich it with contextual
information. Then, a classifier filters the graph of all possible dependency
arcs to produce the dependency tree. One major benefit of this system is that
it can be easily integrated into modern deep-learning pipelines. Moreover,
since it does not rely on any particular symbolic grammar, it can consider
multiple musical features simultaneously, make use of sequential context
information, and produce partial results for noisy inputs. We test our approach
on two datasets of musical trees -- time-span trees of monophonic note
sequences and harmonic trees of jazz chord sequences -- and show that our
approach outperforms previous methods.
Related papers
- Cluster and Separate: a GNN Approach to Voice and Staff Prediction for Score Engraving [5.572472212662453]
This paper approaches the problem of separating the notes from a quantized symbolic music piece (e.g., a MIDI file) into multiple voices and staves.
We propose an end-to-end system based on graph neural networks that notes that belong to the same chord and connect them with edges if they are part of a voice.
arXiv Detail & Related papers (2024-07-15T14:36:13Z) - N-Gram Unsupervised Compoundation and Feature Injection for Better
Symbolic Music Understanding [27.554853901252084]
Music sequences exhibit strong correlations between adjacent elements, making them prime candidates for N-gram techniques from Natural Language Processing (NLP)
In this paper, we propose a novel method, NG-Midiformer, for understanding symbolic music sequences that leverages the N-gram approach.
arXiv Detail & Related papers (2023-12-13T06:08:37Z) - Graph-based Polyphonic Multitrack Music Generation [9.701208207491879]
This paper introduces a novel graph representation for music and a deep Variational Autoencoder that generates the structure and the content of musical graphs separately.
By separating the structure and content of musical graphs, it is possible to condition generation by specifying which instruments are played at certain times.
arXiv Detail & Related papers (2023-07-27T15:18:50Z) - Structured Dialogue Discourse Parsing [79.37200787463917]
discourse parsing aims to uncover the internal structure of a multi-participant conversation.
We propose a principled method that improves upon previous work from two perspectives: encoding and decoding.
Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni.
arXiv Detail & Related papers (2023-06-26T22:51:01Z) - Cadence Detection in Symbolic Classical Music using Graph Neural
Networks [7.817685358710508]
We present a graph representation of symbolic scores as an intermediate means to solve the cadence detection task.
We approach cadence detection as an imbalanced node classification problem using a Graph Convolutional Network.
Our experiments suggest that graph convolution can learn non-local features that assist in cadence detection, freeing us from the need of having to devise specialized features that encode non-local context.
arXiv Detail & Related papers (2022-08-31T12:39:57Z) - Incorporating Constituent Syntax for Coreference Resolution [50.71868417008133]
We propose a graph-based method to incorporate constituent syntactic structures.
We also explore to utilise higher-order neighbourhood information to encode rich structures in constituent trees.
Experiments on the English and Chinese portions of OntoNotes 5.0 benchmark show that our proposed model either beats a strong baseline or achieves new state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T07:40:42Z) - Conditional Drums Generation using Compound Word Representations [4.435094091999926]
We tackle the task of conditional drums generation using a novel data encoding scheme inspired by Compound Word representation.
We present a sequence-to-sequence architecture where a Bidirectional Long short-term memory (BiLSTM) receives information about the conditioning parameters.
A Transformer-based Decoder with relative global attention produces the generated drum sequences.
arXiv Detail & Related papers (2022-02-09T13:49:27Z) - Syntactic representation learning for neural network based TTS with
syntactic parse tree traversal [49.05471750563229]
We propose a syntactic representation learning method based on syntactic parse tree to automatically utilize the syntactic structure information.
Experimental results demonstrate the effectiveness of our proposed approach.
For sentences with multiple syntactic parse trees, prosodic differences can be clearly perceived from the synthesized speeches.
arXiv Detail & Related papers (2020-12-13T05:52:07Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
This paper evaluates different types of memory mechanisms (memory cells) and analyses their performance in the field of music composition.
A set of quantitative metrics is presented to evaluate the performance of the proposed architecture automatically.
arXiv Detail & Related papers (2020-12-02T14:19:19Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
We present a new symbolic music dataset that will help researchers demonstrate the efficacy of their algorithms on diverse domains.
This will also provide a means for evaluating algorithms specifically designed for music.
The dataset is large enough (approx. 1.3 million data points) to train and test deep networks for disentanglement learning.
arXiv Detail & Related papers (2020-07-29T19:20:07Z) - Vector-Quantized Timbre Representation [53.828476137089325]
This paper targets a more flexible synthesis of an individual timbre by learning an approximate decomposition of its spectral properties with a set of generative features.
We introduce an auto-encoder with a discrete latent space that is disentangled from loudness in order to learn a quantized representation of a given timbre distribution.
We detail results for translating audio between orchestral instruments and singing voice, as well as transfers from vocal imitations to instruments.
arXiv Detail & Related papers (2020-07-13T12:35:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.