Computing Star Discrepancies with Numerical Black-Box Optimization
Algorithms
- URL: http://arxiv.org/abs/2306.16998v1
- Date: Thu, 29 Jun 2023 14:57:56 GMT
- Title: Computing Star Discrepancies with Numerical Black-Box Optimization
Algorithms
- Authors: Fran\c{c}ois Cl\'ement, Diederick Vermetten, Jacob de Nobel, Alexandre
D. Jesus, Lu\'is Paquete, Carola Doerr
- Abstract summary: We compare 8 popular numerical black-box optimization algorithms on the $L_infty$ star discrepancy problem.
We show that all used solvers perform very badly on a large majority of the instances.
We suspect that state-of-the-art numerical black-box optimization techniques fail to capture the global structure of the problem.
- Score: 56.08144272945755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $L_{\infty}$ star discrepancy is a measure for the regularity of a finite
set of points taken from $[0,1)^d$. Low discrepancy point sets are highly
relevant for Quasi-Monte Carlo methods in numerical integration and several
other applications. Unfortunately, computing the $L_{\infty}$ star discrepancy
of a given point set is known to be a hard problem, with the best exact
algorithms falling short for even moderate dimensions around 8. However,
despite the difficulty of finding the global maximum that defines the
$L_{\infty}$ star discrepancy of the set, local evaluations at selected points
are inexpensive. This makes the problem tractable by black-box optimization
approaches.
In this work we compare 8 popular numerical black-box optimization algorithms
on the $L_{\infty}$ star discrepancy computation problem, using a wide set of
instances in dimensions 2 to 15. We show that all used optimizers perform very
badly on a large majority of the instances and that in many cases random search
outperforms even the more sophisticated solvers. We suspect that
state-of-the-art numerical black-box optimization techniques fail to capture
the global structure of the problem, an important shortcoming that may guide
their future development.
We also provide a parallel implementation of the best-known algorithm to
compute the discrepancy.
Related papers
- Certified Multi-Fidelity Zeroth-Order Optimization [4.450536872346658]
We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels.
We propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$.
We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity.
arXiv Detail & Related papers (2023-08-02T07:20:37Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Robust estimation via generalized quasi-gradients [28.292300073453877]
We show why many recently proposed robust estimation problems are efficiently solvable.
We identify the existence of "generalized quasi-gradients"
We show that generalized quasi-gradients exist and construct efficient algorithms.
arXiv Detail & Related papers (2020-05-28T15:14:33Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
Mixed integer programming (MIP) can be used to solve (to optimality) $ell_0$-regularized regression problems.
We propose two classes of scalable algorithms: an exact algorithm that can handlepapprox 50,000$ features in a few minutes, and approximate algorithms that can address instances with $papprox6$.
In addition, we present new estimation error bounds for $ell$-regularizeds.
arXiv Detail & Related papers (2020-01-17T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.