論文の概要: Honesty is the Best Policy: On the Accuracy of Apple Privacy Labels Compared to Apps' Privacy Policies
- arxiv url: http://arxiv.org/abs/2306.17063v2
- Date: Sun, 16 Jun 2024 16:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:50:30.145216
- Title: Honesty is the Best Policy: On the Accuracy of Apple Privacy Labels Compared to Apps' Privacy Policies
- Title(参考訳): アプリのプライバシーポリシーと比較して、Appleのプライバシーラベルの正確性について
- Authors: Mir Masood Ali, David G. Balash, Monica Kodwani, Chris Kanich, Adam J. Aviv,
- Abstract要約: Appleは2020年12月に、アプリのプライバシー動作を報告するためのプライバシーラベルを導入した。
Appleはラベルを検証していないが、開発者は重要な比較ポイントを提供するプライバシーポリシーを提供する必要がある。
BERTベースの言語モデルを微調整して,iOS App Storeの474,669アプリのプライバシポリシ機能を抽出しました。
- 参考スコア(独自算出の注目度): 13.771909487087793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Apple introduced privacy labels in Dec. 2020 as a way for developers to report the privacy behaviors of their apps. While Apple does not validate labels, they also require developers to provide a privacy policy, which offers an important comparison point. In this paper, we fine-tuned BERT-based language models to extract privacy policy features for 474,669 apps on the iOS App Store, comparing the output to the privacy labels. We identify discrepancies between the policies and the labels, particularly as they relate to data collected linked to users. We find that 228K apps' privacy policies may indicate data collection linked to users than what is reported in the privacy labels. More alarming, a large number (97%) of the apps with a Data Not Collected privacy label have a privacy policy indicating otherwise. We provide insights into potential sources for discrepancies, including the use of templates and confusion around Apple's definitions and requirements. These results suggest that significant work is still needed to help developers more accurately label their apps. Our system can be incorporated as a first-order check to inform developers when privacy labels are possibly misapplied.
- Abstract(参考訳): Appleは2020年12月に、アプリのプライバシー動作を報告するためのプライバシーラベルを導入した。
Appleはラベルを検証していないが、開発者は重要な比較ポイントを提供するプライバシーポリシーを提供する必要がある。
本稿では,BERTベースの言語モデルを微調整し,iOS App Storeの474,669のアプリのプライバシポリシ機能を抽出し,出力とプライバシラベルを比較した。
我々は、ポリシーとラベルの相違点を識別し、特にユーザによって収集されたデータに関連している。
228Kアプリのプライバシポリシは、プライバシラベルに報告されているものよりも、ユーザに関連するデータ収集を示す可能性がある。
さらに注意すべきは、Data Not Collectedのプライバシーラベルを持つアプリの多数の(97%)が、それ以外はプライバシーポリシーを持っていることだ。
テンプレートの使用や,Appleの定義や要件に関する混乱など,不一致の可能性のあるソースに関する洞察を提供する。
これらの結果は、デベロッパーがアプリをより正確にラベル付けするのに、依然として重要な作業が必要であることを示唆している。
当社のシステムは,プライバシラベルが誤適用される可能性があることを開発者に通知するための,ファーストオーダーチェックとして組み込むことができる。
関連論文リスト
- Toward the Cure of Privacy Policy Reading Phobia: Automated Generation
of Privacy Nutrition Labels From Privacy Policies [19.180437130066323]
プライバシーポリシーからプライバシー栄養ラベルを自動的に生成できる最初のフレームワークを提案する。
Google Play App StoreのData Safety Reportに関する私たちの真実のアプリケーションに基づいて、当社のフレームワークは、サードパーティのデータ収集プラクティスの生成において、0.75F1スコアを達成しています。
また、市場における地平の真実と保護されたプライバシーの栄養ラベルの矛盾を分析し、我々のフレームワークは90.1%の未解決の問題を検出することができる。
論文 参考訳(メタデータ) (2023-06-19T13:33:44Z) - ATLAS: Automatically Detecting Discrepancies Between Privacy Policies
and Privacy Labels [2.457872341625575]
自動プライバシラベル解析システム(ATLAS)について紹介する。
ATLASは、モバイルアプリのプライバシーポリシーとプライバシーラベルの相違点を特定する。
平均して、アプリには5.32のコンプライアンス上の問題があることがわかっています。
論文 参考訳(メタデータ) (2023-05-24T05:27:22Z) - The Overview of Privacy Labels and their Compatibility with Privacy
Policies [24.871967983289117]
プライバシ栄養ラベルは、長く読みにくいプライバシポリシを読むことなく、アプリの重要なデータプラクティスを理解する方法を提供する。
Apple(アップル)とGoogle(グーグル)は、アプリ開発者がプライバシーに関する慣行を強調したプライバシー保護ラベルを埋めることを義務付けている。
論文 参考訳(メタデータ) (2023-03-14T20:10:28Z) - Crowdsourcing on Sensitive Data with Privacy-Preserving Text Rewriting [9.409281517596396]
データラベリングは、スケーラビリティの理由から、クラウドソーシングプラットフォーム上で行われることが多い。
公開プラットフォームにデータを公開するのは、プライバシ関連の情報が含まれていない場合に限られる。
個人識別可能な情報(PII)を削除したり、差分プライバシ(DP)書き換えを行ったりすることで、クラウドソーシングにプライバシ関連情報を用いたテキストを利用できるかを検討する。
論文 参考訳(メタデータ) (2023-03-06T11:54:58Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z) - Goodbye Tracking? Impact of iOS App Tracking Transparency and Privacy
Labels [25.30364629335751]
AppleはiOS 14で、iOS上のトラッキングを可能にする必須オプトインシステムであるApp Tracking Transparency (ATT)と、プライバシ栄養ラベルの2つの重要な変更を導入した。
この記事では、英国App Storeから1,759のiOSアプリの2つのバージョンを分析し、これらの変更が個人のプライバシとコントロールに与える影響について論じる。
Apple自身が、サードパーティの追跡や信用スコアなどの侵入的なデータプラクティスを、何らかの形で追跡し、免除していることに気付きました。
論文 参考訳(メタデータ) (2022-04-07T16:32:58Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - Analysis of Longitudinal Changes in Privacy Behavior of Android
Applications [79.71330613821037]
本稿では,プライバシに関して,Androidアプリが時間とともにどのように変化してきたかを検討する。
HTTPSの採用、アプリが他のインストール済みアプリのデバイスをスキャンするかどうか、プライバシに敏感なデータに対するパーミッションの使用、ユニークな識別子の使用について検討する。
アプリがアップデートを受け続けるにつれて、プライバシ関連の振る舞いは時間とともに改善され、アプリによって使用されるサードパーティライブラリが、プライバシに関するより多くの問題に責任を負っていることが分かっています。
論文 参考訳(メタデータ) (2021-12-28T16:21:31Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
接触追跡は、新型コロナウイルスなどの感染症の拡散を制御する重要な方法である。
現在のソリューションでは、ビジネスデータベースや個々のデジタルデバイスに格納された大量のデータを利用できません。
データサイロを破り、プライバシーの目標を保証するために最先端の暗号化プロトコルをデプロイする統合プラットフォームであるBeeTraceを提案する。
論文 参考訳(メタデータ) (2020-07-05T10:33:45Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。