Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization
- URL: http://arxiv.org/abs/2306.17075v1
- Date: Thu, 29 Jun 2023 16:25:04 GMT
- Title: Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization
- Authors: Yingxin Lai, Zhiming Luo, Zitong Yu
- Abstract summary: We introduce the well-trained vision segmentation foundation model, i.e., Segment Anything Model (SAM) in face forgery detection and localization.
Based on SAM, we propose the Detect Any Deepfakes (DADF) framework with the Multiscale Adapter.
The proposed framework seamlessly integrates end-to-end forgery localization and detection optimization.
- Score: 30.317619885984005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancements in computer vision have stimulated remarkable progress
in face forgery techniques, capturing the dedicated attention of researchers
committed to detecting forgeries and precisely localizing manipulated areas.
Nonetheless, with limited fine-grained pixel-wise supervision labels, deepfake
detection models perform unsatisfactorily on precise forgery detection and
localization. To address this challenge, we introduce the well-trained vision
segmentation foundation model, i.e., Segment Anything Model (SAM) in face
forgery detection and localization. Based on SAM, we propose the Detect Any
Deepfakes (DADF) framework with the Multiscale Adapter, which can capture
short- and long-range forgery contexts for efficient fine-tuning. Moreover, to
better identify forged traces and augment the model's sensitivity towards
forgery regions, Reconstruction Guided Attention (RGA) module is proposed. The
proposed framework seamlessly integrates end-to-end forgery localization and
detection optimization. Extensive experiments on three benchmark datasets
demonstrate the superiority of our approach for both forgery detection and
localization. The codes will be released soon at
https://github.com/laiyingxin2/DADF.
Related papers
- Object-level Copy-Move Forgery Image Detection based on Inconsistency Mining [25.174869954072648]
This paper proposes an Object-level Copy-Move Forgery Image Detection based on Inconsistency Mining (IMNet)
To obtain complete object-level targets, we customize prototypes for both the source and tampered regions and dynamically update them.
We operate experiments on three public datasets which validate the effectiveness and the robustness of the proposed IMNet.
arXiv Detail & Related papers (2024-03-31T09:01:17Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Weakly-supervised deepfake localization in diffusion-generated images [4.548755617115687]
We propose a weakly-supervised localization problem based on the Xception network as the backbone architecture.
We show that the best performing detection method (based on local scores) is less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
arXiv Detail & Related papers (2023-11-08T10:27:36Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Cross-Domain Local Characteristic Enhanced Deepfake Video Detection [18.430287055542315]
Deepfake detection has attracted increasing attention due to security concerns.
Many detectors cannot achieve accurate results when detecting unseen manipulations.
We propose a novel pipeline, Cross-Domain Local Forensics, for more general deepfake video detection.
arXiv Detail & Related papers (2022-11-07T07:44:09Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
Recent advances in face forgery techniques produce nearly untraceable deepfake videos, which could be leveraged with malicious intentions.
Previous studies has identified the importance of local low-level cues and temporal information in pursuit to generalize well across deepfake methods.
We propose the Local- & Temporal-aware Transformer-based Deepfake Detection framework, which adopts a local-to-global learning protocol.
arXiv Detail & Related papers (2022-07-06T16:46:30Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Local Relation Learning for Face Forgery Detection [73.73130683091154]
We propose a novel perspective of face forgery detection via local relation learning.
Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which measures the similarity between features of local regions.
We also propose an RGB-Frequency Attention Module (RFAM) to fuse information in both RGB and frequency domains for more comprehensive local feature representation.
arXiv Detail & Related papers (2021-05-06T10:44:32Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.