Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation
- URL: http://arxiv.org/abs/2108.01634v1
- Date: Tue, 3 Aug 2021 17:09:56 GMT
- Title: Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation
- Authors: Victor Besnier, Andrei Bursuc, David Picard, Alexandre Briot
- Abstract summary: We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
- Score: 76.2621758731288
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we tackle the detection of out-of-distribution (OOD) objects
in semantic segmentation. By analyzing the literature, we found that current
methods are either accurate or fast but not both which limits their usability
in real world applications. To get the best of both aspects, we propose to
mitigate the common shortcomings by following four design principles:
decoupling the OOD detection from the segmentation task, observing the entire
segmentation network instead of just its output, generating training data for
the OOD detector by leveraging blind spots in the segmentation network and
focusing the generated data on localized regions in the image to simulate OOD
objects. Our main contribution is a new OOD detection architecture called
ObsNet associated with a dedicated training scheme based on Local Adversarial
Attacks (LAA). We validate the soundness of our approach across numerous
ablation studies. We also show it obtains top performances both in speed and
accuracy when compared to ten recent methods of the literature on three
different datasets.
Related papers
- TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
We propose textbfTagOOD, a novel approach for OOD detection using vision-language representations.
TagOOD trains a lightweight network on the extracted object features to learn representative class centers.
These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection.
arXiv Detail & Related papers (2024-08-28T06:37:59Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant
Analysis [21.023001428704085]
We propose a novel feature-space OOD detection score based on class-specific and class-agnostic information.
The efficacy of our method, named WDiscOOD, is verified on the large-scale ImageNet-1k benchmark.
arXiv Detail & Related papers (2023-03-14T00:13:57Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
We propose a simple and effective post-hoc technique, WeShort, to reduce the overconfidence of neural networks on OOD data.
Our method is compatible with different OOD detection scores and can generalize well to different architectures of networks.
arXiv Detail & Related papers (2022-06-23T07:59:10Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
arXiv Detail & Related papers (2022-03-15T11:26:35Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.