Partial Syndrome Measurement for Hypergraph Product Codes
- URL: http://arxiv.org/abs/2306.17122v3
- Date: Wed, 1 May 2024 18:19:42 GMT
- Title: Partial Syndrome Measurement for Hypergraph Product Codes
- Authors: Noah Berthusen, Daniel Gottesman,
- Abstract summary: Hypergraph product codes are a promising avenue to achieving fault-tolerant quantum computation with constant overhead.
We introduce a fault-tolerance scheme that aims to alleviate the effects of implementing this nonlocality.
We find numerical evidence that the logical error rate is exponentially suppressed even when a large constant fraction of generators are not measured.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypergraph product codes are a promising avenue to achieving fault-tolerant quantum computation with constant overhead. When embedding these and other constant-rate qLDPC codes into 2D, a significant number of nonlocal connections are required, posing difficulties for some quantum computing architectures. In this work, we introduce a fault-tolerance scheme that aims to alleviate the effects of implementing this nonlocality by measuring generators acting on spatially distant qubits less frequently than those which do not. We investigate the performance of a simplified version of this scheme, where the measured generators are randomly selected. When applied to hypergraph product codes and a modified small-set-flip decoding algorithm, we prove that for a sufficiently high percentage of generators being measured, a threshold still exists. We also find numerical evidence that the logical error rate is exponentially suppressed even when a large constant fraction of generators are not measured.
Related papers
- Achieving computational gains with quantum error correction primitives: Generation of long-range entanglement enhanced by error detection [0.0]
We show that the strategic application of QEC primitives without logical encoding can yield significant advantages on superconducting processors.
We present a novel protocol for implementing long-range CNOT gates that relies on a unitarily-prepared Greenberger-Horne-Zeilinger (GHZ) state as well as a unitary disentangling step.
We generate a 75-qubit GHZ state exhibiting genuine multipartite entanglement, the largest reported to date.
arXiv Detail & Related papers (2024-11-22T00:08:23Z) - Single-shot preparation of hypergraph product codes via dimension jump [0.0]
We present a protocol that prepares the codespace of constant-rate hypergraph product codes in constant depth with $O(sqrtn)$ spatial overhead.
We show that the protocol is robust even in the presence of measurement errors.
arXiv Detail & Related papers (2024-10-07T16:29:13Z) - Non-local resources for error correction in quantum LDPC codes [0.0]
Surface code suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation.
hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size.
Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates.
arXiv Detail & Related papers (2024-09-09T17:28:41Z) - Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code [0.0]
Many current quantum error correcting codes that achieve full fault-tolerance suffer from having low ratios of logical to physical qubits and significant overhead.
We propose a middle ground: constructions in the [[n,n-2,2]] quantum error detecting code that can detect any error from a single faulty gate.
arXiv Detail & Related papers (2024-08-27T07:25:36Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Flag Gadgets based on Classical Codes [1.30536490219656]
We develop a framework to design flag gadgets using classical codes.
We show how to perform fault-tolerant syndrome extraction for any stabilizer code with arbitrary distance.
These small examples may be relevant to near-term experiments on small-scale quantum computers.
arXiv Detail & Related papers (2022-12-21T03:16:49Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.