Non-local resources for error correction in quantum LDPC codes
- URL: http://arxiv.org/abs/2409.05818v1
- Date: Mon, 9 Sep 2024 17:28:41 GMT
- Title: Non-local resources for error correction in quantum LDPC codes
- Authors: Omprakash Chandra, Gopikrishnan Muraleedharan, Gavin K. Brennen,
- Abstract summary: Surface code suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation.
hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size.
Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling fault-tolerant quantum computing is essential to realize the potential of quantum computation. Surface code has been the best choice over the last decade because of its effective error suppression capability. However, it suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation. In contrast, hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size. Despite this, their non-local stabilizers necessitate long-range connectivity for stabilizer measurements, posing significant experimental challenges. Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates, enabling the creation of non-local cat states. We integrate the non-local resource into the DiVincenzo-Aliferis method for fault-tolerant stabilizer measurement. We apply the scheme to long-range quantum hypergraph product codes, performing circuit-level noise simulations including the the cavity error model, achieving a promising threshold. Additionally, we propose a tri-layer architectural layout for scheduling stabilizer measurements, enhancing circuit parallelizability.
Related papers
- QUITS: A modular Qldpc code circUIT Simulator [0.6383572393537065]
QUITS is a modular and flexible circuit-level simulator for QLDPC codes.
We introduce a syndrome extraction circuit improved from Tremblay, Delfosse, and Beverland.
We evaluate the performance of state-of-the-art QLDPC codes and decoders under various settings.
arXiv Detail & Related papers (2025-04-03T15:14:13Z) - Constant-Overhead Fault-Tolerant Bell-Pair Distillation using High-Rate Codes [3.4338109681532027]
We present a fault-tolerant Bell-pair distillation scheme achieving constant overhead through high-rate quantum low-density parity-check (qLDPC) codes.
Our approach maintains a constant distillation rate equal to the code rate while requiring no additional overhead beyond the physical qubits of the code.
Results establish qLDPC-based distillation as a practical route toward resource-efficient quantum networks and distributed quantum computing.
arXiv Detail & Related papers (2025-02-13T17:57:13Z) - Demonstrating dynamic surface codes [138.1740645504286]
We experimentally demonstrate three time-dynamic implementations of the surface code.
First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three.
Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors.
Third, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead.
arXiv Detail & Related papers (2024-12-18T21:56:50Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.
We show how these codes can be integrated in two-dimensional static neutral atom qubit architectures with open boundaries.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Distance-preserving stabilizer measurements in hypergraph product codes [0.0]
We show that a family of finite-rate QLDPC codes, hypergraph product codes, has the convenient property of distance-robustness.
In particular, we prove the depth-optimal circuit in [Tremblay et al, PRL 129, 050504 (2022) is also optimal in terms of effective distance.
arXiv Detail & Related papers (2023-08-29T18:00:00Z) - Tangling schedules eases hardware connectivity requirements for quantum error correction [3.0040661953201475]
We introduce a method of tangled syndrome extraction circuits, which enables measurement of observables between distant qubits.
We show how to measure the aforementioned irregular non-local stabilisers, without physically modifying the hardware itself.
arXiv Detail & Related papers (2023-07-19T17:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - Fault-tolerant qubit from a constant number of components [1.0499611180329804]
Gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation.
We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components.
arXiv Detail & Related papers (2020-11-16T19:01:03Z) - Efficient simulatability of continuous-variable circuits with large
Wigner negativity [62.997667081978825]
Wigner negativity is known to be a necessary resource for computational advantage in several quantum-computing architectures.
We identify vast families of circuits that display large, possibly unbounded, Wigner negativity, and yet are classically efficiently simulatable.
We derive our results by establishing a link between the simulatability of high-dimensional discrete-variable quantum circuits and bosonic codes.
arXiv Detail & Related papers (2020-05-25T11:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.