論文の概要: Topological Data Analysis Guided Segment Anything Model Prompt
Optimization for Zero-Shot Segmentation in Biological Imaging
- arxiv url: http://arxiv.org/abs/2306.17400v1
- Date: Fri, 30 Jun 2023 05:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 13:32:15.387734
- Title: Topological Data Analysis Guided Segment Anything Model Prompt
Optimization for Zero-Shot Segmentation in Biological Imaging
- Title(参考訳): 生体イメージングにおけるゼロショットセグメンテーションのためのトポロジカルデータ解析ガイド付きセグメントモデルプロンプト最適化
- Authors: Ruben Glatt and Shusen Liu
- Abstract要約: 我々は,Segment Anything Model (SAM) のプロンプト最適化を導くトポロジカルデータ解析を提案する。
以上の結果から,TDA最適化点雲は小型物体の発見に非常に適しており,計算複雑性を大幅に低減することがわかった。
- 参考スコア(独自算出の注目度): 5.795215830149858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging foundation models in machine learning are models trained on vast
amounts of data that have been shown to generalize well to new tasks. Often
these models can be prompted with multi-modal inputs that range from natural
language descriptions over images to point clouds. In this paper, we propose
topological data analysis (TDA) guided prompt optimization for the Segment
Anything Model (SAM) and show preliminary results in the biological image
segmentation domain. Our approach replaces the standard grid search approach
that is used in the original implementation and finds point locations based on
their topological significance. Our results show that the TDA optimized point
cloud is much better suited for finding small objects and massively reduces
computational complexity despite the extra step in scenarios which require many
segmentations.
- Abstract(参考訳): 機械学習における新たな基盤モデルは、新しいタスクにうまく一般化することが示されている膨大なデータに基づいてトレーニングされたモデルである。
これらのモデルは、画像上の自然言語記述から点雲まで、多モード入力でトリガーされることが多い。
本稿では,Segment Anything Model (SAM) のプロンプト最適化を目的としたトポロジカルデータ解析(TDA)を提案し,生物画像セグメンテーション領域における予備的な結果を示す。
提案手法は,従来の実装で使用されている標準グリッド探索手法を代替し,そのトポロジ的意義に基づいて点位置を求める。
以上の結果から,TDA最適化ポイントクラウドは,多くのセグメンテーションを必要とするシナリオの余分なステップにもかかわらず,小さなオブジェクトを見つけるのに非常に適しており,計算の複雑さを大幅に削減できることがわかった。
関連論文リスト
- Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation [3.5177988631063486]
本稿では,SAMの学習済み自然画像エンコーダを検出ベース領域提案に適用する手法を提案する。
SAMというベースフレームワーク全体は、追加のトレーニングや微調整を必要としないが、病理学における2つの基本的なセグメンテーションタスクに対してエンドツーエンドの結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-04-12T16:29:49Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - A Topological-Framework to Improve Analysis of Machine Learning Model
Performance [5.3893373617126565]
本稿では、データセットをモデルが動作する「空間」として扱う機械学習モデルを評価するためのフレームワークを提案する。
本稿では,各サブポピュレーション間でのモデル性能の保存と解析に有用なトポロジカルデータ構造であるプレシーブについて述べる。
論文 参考訳(メタデータ) (2021-07-09T23:11:13Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
本稿では,未知数の幾何学的モデル,例えばホモグラフィーを求めるアルゴリズムを提案する。
複数の幾何モデルを用いることで精度が向上するアプリケーションをいくつか提示する。
これには、複数の一般化されたホモグラフからのポーズ推定、高速移動物体の軌道推定が含まれる。
論文 参考訳(メタデータ) (2021-03-25T14:35:07Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - CellSegmenter: unsupervised representation learning and instance
segmentation of modular images [0.0]
本稿では,教師なし表現学習とインスタンスセグメンテーションタスクのための構造化された深層生成モデルとアモータイズ推論フレームワークを提案する。
提案した推論アルゴリズムは、再帰的なメカニズムなしで畳み込み並列化されている。
細胞核イメージングデータセットで得られたセグメンテーション結果を示し,高品質なセグメンテーションを実現するための手法の有効性を示した。
論文 参考訳(メタデータ) (2020-11-25T02:10:58Z) - Unsupervised Learning Consensus Model for Dynamic Texture Videos
Segmentation [12.462608802359936]
動的テクスチャのセグメンテーションのための効果的な教師なし学習コンセンサスモデルを提案する。
提案モデルでは,分類対象画素の周辺部における再量子化局所2値パターン(LBP)ヒストグラムの値の集合を特徴として用いた。
挑戦的なSynthDBデータセットで実施された実験は、ULCMが大幅に高速で、コーディングが簡単で、単純で、パラメータが限られていることを示している。
論文 参考訳(メタデータ) (2020-06-29T16:40:59Z) - Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks [2.454342521577328]
畳み込みニューラルネットワーク(CNN)を中心に構築された(二段階)アプローチを提案する。
第1段階では,提案手法はMask RCNNモデルを用いて,深度シーンにおける超クワッドリックな構造を同定する。
我々は、少数の解釈可能なパラメータを持つ複雑な構造を記述することができる。
論文 参考訳(メタデータ) (2020-01-28T18:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。