Quantum stochastic trajectories for particles and fields based on
positive P-representation
- URL: http://arxiv.org/abs/2306.17474v1
- Date: Fri, 30 Jun 2023 08:38:47 GMT
- Title: Quantum stochastic trajectories for particles and fields based on
positive P-representation
- Authors: Stasis Chuchurka, Andrei Benediktovitch and Nina Rohringer
- Abstract summary: We introduce a phase-space description based on the positive P representation for bosonic fields interacting with a system of quantum emitters.
The formalism is applicable to collective light-matter interactions and open quantum systems with decoherence.
A potential future application is the quantum mechanical description of collective spontaneous emission of an incoherently pumped ensemble of atoms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we introduce a phase-space description based on the positive P
representation for bosonic fields interacting with a system of quantum
emitters. The formalism is applicable to collective light-matter interactions
and open quantum systems with decoherence. Conservation of particle numbers is
considered, and a Jordan-Schwinger transformation enables the representation of
multi-level quantum emitters. The evolution of the phase-space description of
the combined system of emitters and field is formulated in terms of stochastic
trajectories and we derive the rules of mapping from traditional quantum
mechanics to this stochastic formalism. The resulting equations of motion
encode deterministic, classical evolution with quantum effects incorporated by
stochastic noise terms. The framework's equations and properties are provided
without specifying the Hamiltonian, aiming for broad applicability in diverse
research domains. A potential future application is the quantum mechanical
description of collective spontaneous emission of an incoherently pumped
ensemble of atoms.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - The electromagnetic vacuum field as an essential ingredient of the
quantum-mechanical ontology [0.0]
We show that when an otherwise classical particle is connected to the zpf, a drastic, qualitative change in the dynamics takes place.
This allows for an explanation of quantum features such as quantum fluctuations, stationary states and transitions, and establishes a natural contact with (nonrelativistic) quantum electrodynamics.
arXiv Detail & Related papers (2022-10-28T20:04:46Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.