Simulating a quasiparticle on a quantum device
- URL: http://arxiv.org/abs/2409.08545v1
- Date: Fri, 13 Sep 2024 05:39:13 GMT
- Title: Simulating a quasiparticle on a quantum device
- Authors: Rimika Jaiswal, Izabella Lovas, Leon Balents,
- Abstract summary: We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems, motivated by the potential in leveraging near-term noisy intermediate scale quantum devices for quantum state preparation. By exploiting translation invariance and potentially other abelian symmetries of the many-body Hamiltonian, we extend the variational quantum eigensolver (VQE) approach to construct spatially localized quasiparticle states that encode information on the whole excited band, allowing us to achieve quantum parallelism. We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain. We show that VQE can capture both the magnon quasiparticles of the paramagnetic phase, and the topologically non-trivial domain wall excitations in the ferromagnetic regime. We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles, and provide valuable insight into the way interactions renormalize the bare spin flip or domain wall excitations of the simple, trivially solvable limits of the model. These results serve as important theoretical input towards utilizing quantum simulators to directly access the quasiparticles of strongly interacting quantum systems, as well as to gain insight into crucial experimentally measured properties directly determined by the nature of these quasiparticles.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum stochastic trajectories for particles and fields based on
positive P-representation [0.0]
We introduce a phase-space description based on the positive P representation for bosonic fields interacting with a system of quantum emitters.
The formalism is applicable to collective light-matter interactions and open quantum systems with decoherence.
A potential future application is the quantum mechanical description of collective spontaneous emission of an incoherently pumped ensemble of atoms.
arXiv Detail & Related papers (2023-06-30T08:38:47Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Detecting Confined and Deconfined Spinons in Dynamical Quantum
Simulations [2.526646643978384]
Dynamical spin-structure factor (DSF) contains fingerprint information of collective excitations in quantum spin systems.
It is challenging to compute the spectral properties accurately via many-body simulations.
We establish a link between the many-body dynamics and quantum simulations by studying the non-equilibrium DSF.
arXiv Detail & Related papers (2021-10-05T17:50:12Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - The quantum dynamical map of the spin boson model [0.0]
We present a non-peturbative extension of such map, i.e. that is valid for a general spin coupled to a bosonic environment in a thermal state.
The proposed derivation can be extended to other finite-level open quantum systems including many body, initial system-environment correlated states, multiple-time correlation functions or quantum information protocols.
arXiv Detail & Related papers (2020-01-13T13:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.