An Ontological Approach to Compliance Verification of the NIS 2 Directive
- URL: http://arxiv.org/abs/2306.17494v2
- Date: Sat, 2 Mar 2024 14:30:51 GMT
- Title: An Ontological Approach to Compliance Verification of the NIS 2 Directive
- Authors: Gianpietro Castiglione, Daniele Francesco Santamaria, Giampaolo Bella,
- Abstract summary: This paper introduces an approach that leverages techniques of semantic representation and reasoning, hence an ontological approach, towards the compliance check with the security measures that textual documents prescribe.
The formalisation of entities and relations from the directive, and the consequent improved structuring with respect to sheer prose is dramatically helpful for any organisation through the hard task of compliance verification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cybersecurity, which notoriously concerns both human and technological aspects, is becoming more and more regulated by a number of textual documents spanning several pages, such as the European GDPR Regulation and the NIS Directive. This paper introduces an approach that leverages techniques of semantic representation and reasoning, hence an ontological approach, towards the compliance check with the security measures that textual documents prescribe. We choose the ontology instrument to achieve two fundamental objectives: domain modelling and resource interrogation. The formalisation of entities and relations from the directive, and the consequent improved structuring with respect to sheer prose is dramatically helpful for any organisation through the hard task of compliance verification. The semantic approach is demonstrated with two articles of the new European NIS 2 directive.
Related papers
- Knowledge-Augmented Reasoning for EUAIA Compliance and Adversarial Robustness of LLMs [1.368472250332885]
The EU AI Act (EUAIA) introduces requirements for AI systems which intersect with the processes required to establish adversarial robustness.
This paper presents a functional architecture that focuses on bridging the two properties.
We aim to support developers and auditors with a reasoning layer based on knowledge augmentation.
arXiv Detail & Related papers (2024-10-04T18:23:14Z) - Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems [5.26895401335509]
We present a respective procedure that extends the AI-HLEG guidelines published by the European Commission.
Our audit procedure is based on an ML lifecycle model that explicitly focuses on documentation, accountability, and quality assurance.
We describe two pilots conducted on real-world use cases from two different organisations.
arXiv Detail & Related papers (2024-05-21T20:40:37Z) - Identification of Regulatory Requirements Relevant to Business
Processes: A Comparative Study on Generative AI, Embedding-based Ranking,
Crowd and Expert-driven Methods [10.899912290518648]
This work examines how legal and domain experts can be assisted in the assessment of relevant requirements.
We compare an embedding-based NLP ranking method, a generative AI method using GPT-4, and a crowdsourced method with the purely manual method of creating labels by experts.
A gold standard is created for both BPMN2.0 processes and matched to real-world requirements from multiple regulatory documents.
arXiv Detail & Related papers (2024-01-02T12:08:31Z) - An automated method for the ontological representation of security
directives [0.0]
The paper frames this problem in the context of recent European security directives.
The complexity of their language is here thwarted by the extraction of the relevant information, namely of the parts of speech from each clause.
The method is showcased on a practical problem, namely to derive an ontology representing the NIS 2 directive, which is the peak of cybersecurity prescripts at the European level.
arXiv Detail & Related papers (2023-06-30T09:04:47Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
We establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process.
This is the first theoretical guarantee for these two coupled ODL components: optimization and learning.
arXiv Detail & Related papers (2023-02-11T03:35:13Z) - Bridging between LegalRuleML and TPTP for Automated Normative Reasoning
(extended version) [77.34726150561087]
LegalRuleML is an XML-based representation framework for modeling and exchanging normative rules.
The TPTP input and output formats are general-purpose standards for the interaction with automated reasoning systems.
We provide a bridge between the two communities by defining a logic-pluralistic normative reasoning language based on the TPTP format.
arXiv Detail & Related papers (2022-09-12T08:42:34Z) - INTERACTION: A Generative XAI Framework for Natural Language Inference
Explanations [58.062003028768636]
Current XAI approaches only focus on delivering a single explanation.
This paper proposes a generative XAI framework, INTERACTION (explaIn aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder)
Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation.
arXiv Detail & Related papers (2022-09-02T13:52:39Z) - Entity Graph Extraction from Legal Acts -- a Prototype for a Use Case in
Policy Design Analysis [52.77024349608834]
This paper presents a prototype developed to serve the quantitative study of public policy design.
Our system aims to automate the process of gathering legal documents, annotating them with Institutional Grammar, and using hypergraphs to analyse inter-relations between crucial entities.
arXiv Detail & Related papers (2022-09-02T10:57:47Z) - Group Gated Fusion on Attention-based Bidirectional Alignment for
Multimodal Emotion Recognition [63.07844685982738]
This paper presents a new model named as Gated Bidirectional Alignment Network (GBAN), which consists of an attention-based bidirectional alignment network over LSTM hidden states.
We empirically show that the attention-aligned representations outperform the last-hidden-states of LSTM significantly.
The proposed GBAN model outperforms existing state-of-the-art multimodal approaches on the IEMOCAP dataset.
arXiv Detail & Related papers (2022-01-17T09:46:59Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.