論文の概要: TTSWING: a Dataset for Table Tennis Swing Analysis
- arxiv url: http://arxiv.org/abs/2306.17550v1
- Date: Fri, 30 Jun 2023 11:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 12:55:03.342679
- Title: TTSWING: a Dataset for Table Tennis Swing Analysis
- Title(参考訳): TTSWing:テーブルテニススウィング分析のためのデータセット
- Authors: Che-Yu Chou, Zheng-Hao Chen, Yung-Hoh Sheu, Hung-Hsuan Chen, Sheng K.
Wu
- Abstract要約: このデータセットは、カスタムメイドのラケットグリップに統合された9軸センサーを介して得られる包括的なスイング情報を含む。
データ収集とアノテーションの手順について詳述する。
各種機械学習モデルを用いたスイング解析のパイロット実験を行った。
- 参考スコア(独自算出の注目度): 1.539942973115038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce TTSWING, a novel dataset designed for table tennis swing
analysis. This dataset comprises comprehensive swing information obtained
through 9-axis sensors integrated into custom-made racket grips, accompanied by
anonymized demographic data of the players. We detail the data collection and
annotation procedures. Furthermore, we conduct pilot studies utilizing diverse
machine learning models for swing analysis. TTSWING holds tremendous potential
to facilitate innovative research in table tennis analysis and is a valuable
resource for the scientific community. We release the dataset and experimental
codes at https://github.com/DEPhantom/TTSWING.
- Abstract(参考訳): 本稿では,卓球スイング解析のための新しいデータセットTTSWingを紹介する。
このデータセットは、カスタムメイドラケットグリップに統合された9軸センサーを介して得られる包括的なスイング情報と、プレイヤーの匿名化された人口統計データとを含む。
データ収集とアノテーション手順について詳述する。
さらに,swing解析に多様な機械学習モデルを用いたパイロット研究を行う。
TTSWingは卓球解析における革新的な研究を促進する大きな可能性を秘めており、科学界にとって貴重な資源である。
私たちはデータセットと実験コードをhttps://github.com/dephantom/ttswingでリリースします。
関連論文リスト
- Why Tabular Foundation Models Should Be a Research Priority [65.75744962286538]
タブラルデータは、多くの分野において支配的なモダリティであるが、研究の注意がほとんど与えられず、スケールとパワーの面ではかなり遅れている。
私たちは現在、表形式の基礎モデル、あるいはLTM(Large Tabular Model)と呼ばれるものの開発を始める時が来たと信じています。
論文 参考訳(メタデータ) (2024-05-02T10:05:16Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - The Full-scale Assembly Simulation Testbed (FAST) Dataset [3.483595743063401]
われわれはVRを用いたFAST(Full-scale Assembly Simulation Testbed)による新しいオープンデータセットを提案する。
このデータセットは、VRで2つの異なるフルスケール構造を組み立てる方法を学ぶ108人の参加者から収集されたデータで構成されている。
論文 参考訳(メタデータ) (2024-03-13T21:30:01Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
データ分析は、詳細な研究と決定的な洞察を生み出すための重要な分析プロセスである。
LLMのコード生成機能を活用した高品質な応答アノテーションの自動生成を提案する。
我々のDACO-RLアルゴリズムは、57.72%のケースにおいて、SFTモデルよりも有用な回答を生成するために、人間のアノテータによって評価される。
論文 参考訳(メタデータ) (2024-03-04T22:47:58Z) - MLFEF: Machine Learning Fusion Model with Empirical Formula to Explore
the Momentum in Competitive Sports [2.4048240311299725]
私たちは2つのモデルを構築します。1つはデータ駆動型に基づくモデルを構築すること、もう1つは経験則に基づくモデルを構築することです。
データ駆動型モデルでは,過去5年間にテニスの試合の公開データや選手の個人情報データを含む大量の公開データを発見した。
メカニズム分析モデルでは,多くのテニス選手や愛好家の提案に基づいて重要な特徴が選択された。
論文 参考訳(メタデータ) (2024-02-19T14:02:13Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
我々は、アノテートされたストロークレベルの記録を持つ、公開可能な最大のバドミントンシングルスデータセットであるShuttleSetを紹介する。
104セット、3,685ラリー、36,492ストロークが2018年から2021年にかけて44試合に出場し、27人の男子シングルと女子シングルが出場した。
ShuttleSetはコンピュータ支援ラベル付けツールで手動で注釈付けされ、ショットタイプを選択する際のラベル付け効率と有効性を高める。
論文 参考訳(メタデータ) (2023-06-08T05:41:42Z) - DataFinder: Scientific Dataset Recommendation from Natural Language
Descriptions [100.52917027038369]
我々は、短い自然言語記述を与えられたデータセットを推奨するタスクを運用する。
この作業を容易にするために、我々は、より大規模な自動構築トレーニングセットと、より少ない専門家によるアノテート評価セットからなるDataFinderデータセットを構築した。
このシステムは、DataFinderデータセットに基づいてトレーニングされ、既存のサードパーティのデータセット検索エンジンよりも関連性の高い検索結果を見つける。
論文 参考訳(メタデータ) (2023-05-26T05:22:36Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
本稿では,テーブルテニスシングルマッチの結果を予測するために機械学習を用いることを提案する。
我々は,プレイヤーとマッチング統計を特徴として用いて,その相対的重要性をアブレーション研究で評価する。
結果は将来の卓球予測モデルのベースラインとして機能し、同様の球技の予測研究にフィードバックすることができる。
論文 参考訳(メタデータ) (2023-03-28T17:42:13Z) - Self-Supervised Neural Architecture Search for Imbalanced Datasets [129.3987858787811]
ニューラルアーキテクチャサーチ(NAS)は、アノテートラベル付きよく計算されたデータセットでトレーニングされた場合、最先端の結果を提供する。
a) アーキテクチャを決定するためにラベルを必要とせず、(b) データセットが不均衡であると仮定する自己管理シナリオに焦点を当てたNASベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-17T14:56:36Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
我々は、研究者が様々な領域でアルゴリズムの有効性を実証するのに役立つ新しいシンボリック・ミュージック・データセットを提案する。
これはまた、音楽用に特別に設計されたアルゴリズムを評価する手段を提供する。
データセットは、遠絡学習のためのディープネットワークのトレーニングとテストに十分な大きさ(約13万データポイント)である。
論文 参考訳(メタデータ) (2020-07-29T19:20:07Z) - TTNet: Real-time temporal and spatial video analysis of table tennis [5.156484100374058]
本稿では,高精細度卓球ビデオのリアルタイム処理を目的としたニューラルネットワークを提案する。
このアプローチは、自動参照システムによるスコア更新を推論するためのコア情報を提供する。
イベントをラベル付けした120fpsのテーブルテニスゲームのビデオ付きマルチタスクデータセットOpenTTGamesを公開している。
論文 参考訳(メタデータ) (2020-04-21T11:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。