Classical benchmarking of zero noise extrapolation beyond the
exactly-verifiable regime
- URL: http://arxiv.org/abs/2306.17839v1
- Date: Fri, 30 Jun 2023 17:57:26 GMT
- Title: Classical benchmarking of zero noise extrapolation beyond the
exactly-verifiable regime
- Authors: Sajant Anand, Kristan Temme, Abhinav Kandala, Michael Zaletel
- Abstract summary: We compare the experimental results to matrix product operator simulations of the Heisenberg evolution.
We observe a discrepancy of up to $20%$ among the different classical approaches.
- Score: 1.2569180784533303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a recent work a quantum error mitigation protocol was applied to the
expectation values obtained from circuits on the IBM Eagle quantum processor
with up $127$ - qubits with up to $60 \; - \; \mbox{CNOT}$ layers. To benchmark
the efficacy of this quantum protocol a physically motivated quantum circuit
family was considered that allowed access to exact solutions in different
regimes. The family interpolated between Clifford circuits and was additionally
evaluated at low depth where exact validation is practical. It was observed
that for highly entangling parameter regimes the circuits are beyond the
validation of matrix product state and isometric tensor network state
approximation methods. Here we compare the experimental results to matrix
product operator simulations of the Heisenberg evolution, find they provide a
closer approximation than these pure-state methods by exploiting the closeness
to Clifford circuits and limited operator growth. Recently other approximation
methods have been used to simulate the full circuit up to its largest extent.
We observe a discrepancy of up to $20\%$ among the different classical
approaches so far, an uncertainty comparable to the bootstrapped error bars of
the experiment. Based on the different approximation schemes we propose
modifications to the original circuit family that challenge the particular
classical methods discussed here.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Simulating quantum circuit expectation values by Clifford perturbation
theory [0.0]
We consider the expectation value problem for circuits composed of Clifford gates and non-Clifford Pauli rotations.
We introduce a perturbative approach based on the truncation of the exponentially growing sum of Pauli terms in the Heisenberg picture.
Results indicate that this systematically improvable perturbative method offers a viable alternative to exact methods for approxing expectation values of large near-Clifford circuits.
arXiv Detail & Related papers (2023-06-07T21:42:10Z) - Partitioning Quantum Chemistry Simulations with Clifford Circuits [1.0286890995028481]
Current quantum computing hardware is restricted by the availability of only few, noisy qubits.
We investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits.
arXiv Detail & Related papers (2023-03-02T13:05:19Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Scalable error mitigation for noisy quantum circuits produces
competitive expectation values [1.51714450051254]
We show the utility of zero-noise extrapolation for relevant quantum circuits using up to 26 qubits, circuit depths of 60, and 1080 CNOT gates.
We show that the efficacy of the error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition.
arXiv Detail & Related papers (2021-08-20T14:32:16Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Term Grouping and Travelling Salesperson for Digital Quantum Simulation [6.945601123742983]
Digital simulation of quantum dynamics by evaluating the time evolution of a Hamiltonian is the initially proposed application of quantum computing.
The large number of quantum gates required for emulating the complete second quantization form of the Hamiltonian makes such an approach unsuitable for near-term devices.
We propose a new term ordering strategy, max-commute-tsp, that simultaneously mitigates both algorithmic and physical errors.
arXiv Detail & Related papers (2020-01-16T18:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.